23 research outputs found

    A review on massive MIMO Antennas for 5G communication systems on challenges and limitations

    Get PDF
    High data rate transfers, high-definition streaming, high-speed internet, and the expanding of the infrastructure such as the ultra-broadband communication systems in wireless communication have become a demand to be considered in improving quality of service and increase the capacity supporting gigabytes bitrate. Massive Multiple-Input Multiple-Output (MIMO) systems technology is evolving from MIMO systems and becoming a high demand for fifth-generation (5G) communication systems and keep expanding further. In the near future, massive MIMO systems could be the main wireless systems of communications technology and can be considered as a key technology to the system in daily lives. The arrangement of the huge number of antenna elements at the base station (BS) for uplink and downlink to support the MIMO systems in increasing its capacity is called a Massive MIMO system, which refers to the vast provisioning of antenna elements at base stations over the number of the single antenna of user equipment. Massive MIMO depends on spatial multiplexing and diversity gain in serving users with simple processing signal of uplink and downlink at the BS. There are challenges in massive MIMO system even though it contains numerous number of antennas, such as channel estimation need to be accurate, precoding at the BS, and signal detection which is related to the first two items. On the other hand, in supporting wideband cellular communication systems and enabling low latency communications and multi-gigabit data rates, the Millimeter-wave (mmWave) technology has been utilized. Also, it is widely influenced the potential of the fifth-generation (5G) New Radio (NR) standard. This study was specifically review and compare on a few designs and methodologies on massive MIMO antenna communication systems. There are three limitations of those antennas were identified to be used for future improvement and to be proposed in designing the massive MIMO antenna systems. A few suggestions to improve the weaknesses and to overcome the challenges have been proposed for future consideration

    A review on massive MIMO antennas for 5G communication systems on challenges and limitations

    Get PDF
    High data rate transfers, high-definition streaming, high-speed internet, and the expanding of the infrastructure such as the ultra-broadband communication systems in wireless communication have become a demand to be considered in improving quality of service and increase the capacity supporting gigabytes bitrate. Massive Multiple-Input MultipleOutput (MIMO) systems technology is evolving from MIMO systems and becoming a high demand for fifth-generation (5G) communication systems and keep expanding further. In the near future, massive MIMO systems could be the main wireless systems of communications technology and can be considered as a key technology to the system in daily lives. The arrangement of the huge number of antenna elements at the base station (BS) for uplink and downlink to support the MIMO systems in increasing its capacity is called a Massive MIMO system, which refers to the vast provisioning of antenna elements at base stations over the number of the single antenna of user equipment. Massive MIMO depends on spatial multiplexing and diversity gain in serving users with simple processing signal of uplink and downlink at the BS. There are challenges in massive MIMO system even though it contains numerous number of antennas, such as channel estimation need to be accurate, precoding at the BS, and signal detection which is related to the first two items. On the other hand, in supporting wideband cellular communication systems and enabling low latency communications and multigigabit data rates, the Millimeter-wave (mmWave) technology has been utilized. Also, it is widely influenced the potential of the fifth-generation (5G) New Radio (NR) standard. This study was specifically review and compare on a few designs and methodologies on massive MIMO antenna communication systems. There are three limitations of those antennas were identified to be used for future improvement and to be proposed in designing the massive MIMO antenna systems. A few suggestions to improve the weaknesses and to overcome the challenges have been proposed for future considerations

    An Improved Complex Signal Based Calibration Method for Beam-Steering Phased Array

    Get PDF

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    A review of technologies and design techniques of millimeter-wave power amplifiers

    Get PDF
    his article reviews the state-of-the-art millimeter-wave (mm-wave) power amplifiers (PAs), focusing on broadband design techniques. An overview of the main solid-state technologies is provided, including Si, gallium arsenide (GaAs), GaN, and other III-V materials, and both field-effect and bipolar transistors. The most popular broadband design techniques are introduced, before critically comparing through the most relevant design examples found in the scientific literature. Given the wide breadth of applications that are foreseen to exploit the mm-wave spectrum, this contribution will represent a valuable guide for designers who need a single reference before adventuring in the challenging task of the mm-wave PA design
    corecore