16,441 research outputs found

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de EconomĂ­a y Competitividad TIN2015-70560-RJunta de AndalucĂ­a TIC-186

    Multi-objective test case prioritization in highly configurable systems: A case study

    Get PDF
    Test case prioritization schedules test cases for execution in an order that attempts to accelerate the detection of faults. The order of test cases is determined by prioritization objectives such as covering code or critical components as rapidly as possible. The importance of this technique has been recognized in the context of Highly-Configurable Systems (HCSs), where the potentially huge number of configurations makes testing extremely challenging. However, current approaches for test case prioritization in HCSs suffer from two main limitations. First, the prioritization is usually driven by a single objective which neglects the potential benefits of combining multiple criteria to guide the detection of faults. Second, instead of using industry-strength case studies, evaluations are conducted using synthetic data, which provides no information about the effectiveness of different prioritization objectives. In this paper, we address both limitations by studying 63 combinations of up to three prioritization objectives in accelerating the detection of faults in the Drupal framework. Results show that non–functional properties such as the number of changes in the features are more effective than functional metrics extracted from the configuration model. Results also suggest that multi-objective prioritization typically results in faster fault detection than mono-objective prioritization.CICYT TIN2012-32273CICYT TIN2015-70560-RJunta de Andalucía P12-TIC- 186

    Many-objective test suite generation for software product lines

    Get PDF
    A Software Product Line (SPL) is a set of products built from a number of features, the set of valid products being defined by a feature model. Typically, it does not make sense to test all products defined by an SPL and one instead chooses a set of products to test (test selection) and, ideally, derives a good order in which to test them (test prioritisation). Since one cannot know in advance which products will reveal faults, test selection and prioritisation are normally based on objective functions that are known to relate to likely effectiveness or cost. This paper introduces a new technique, the grid-based evolution strategy (GrES), which considers several objective functions that assess a selection or prioritisation and aims to optimise on all of these. The problem is thus a many-objective optimisation problem. We use a new approach, in which all of the objective functions are considered but one (pairwise coverage) is seen as the most important. We also derive a novel evolution strategy based on domain knowledge. The results of the evaluation, on randomly generated and realistic feature models, were promising, with GrES outperforming previously proposed techniques and a range of many-objective optimisation algorithms

    Supervised learning with hybrid global optimisation methods

    Get PDF

    Bidirectional optimization of the melting spinning process

    Get PDF
    This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities
    • 

    corecore