1,384 research outputs found

    Controlling Concurrent Change - A Multiview Approach Toward Updatable Vehicle Automation Systems

    Get PDF
    The development of SAE Level 3+ vehicles [{SAE}, 2014] poses new challenges not only for the functional development, but also for design and development processes. Such systems consist of a growing number of interconnected functional, as well as hardware and software components, making safety design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough systems engineering becomes a key requirement, which enables traceability between different design viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of such systems. Formal models can in turn assist in keeping track of how the different viewpoints relate to each other and how the interplay of components affects the overall system behavior. Based on experience from the project Controlling Concurrent Change, this paper presents an approach towards model-based integration and verification of a cause effect chain for a component-based vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers necessary aspects of a design in individual architectural views, e.g. safety and timing. In the synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into the design to ensure adherence to the model. We present a use case description for an environment perception system, starting with a functional architecture, which is the basis for componentization of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we are able to map the reasoning done during verification to vehicle behavior

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs

    High-energy Astrophysics and the Virtual Observatory

    Full text link
    The Virtual Observatory (VO) will revolutionise the way we do Astronomy by allowing easy access to all astronomical data and by making the handling and analysis of datasets at various locations across the globe much simpler and faster. I report here on the need for the VO and its status in Europe, concentrating on the recently started EURO-VO project, and then give two specific applications of VO tools to high-energy astrophysics.Comment: 12 pages, 3 figures, invited talk at the Workshop ``Multifrequency Behaviour of High Energy Cosmic Sources'', Vulcano, Italy, May 2005, F. Giovannelli et al., in pres

    Images of Information Systems Development in the Practice of Architecture

    Get PDF
    This paper explores various architectural images and uses them as analogies with which to explore critically computer-based information systems development. These images include approaches, roles and practices, how they relate to the client, to other professions and trades and the built environment. These images, particularly those relating to participative and adaptive development, will be used to propose parallel emergent forms of computer-based information systems development practices and disciplinary relationships that have the potential to address the inconsistent performance of information systems and a record that includes some notable failures. As well as providing guidance to the IS profession and practice, the paper discusses implications for our teaching and the discipline of information systems in general

    A Dialectical Methodology For Decision Support Systems Design

    Get PDF
    As organizations continue to grow in size, reaching global proportions, they have ever increasing impacts on their environments. Some believe that a much broader array of concerns should be brought into organizational decision-making processes, including greater consideration of social, political, ethical and aesthetic factors (Mitroff and Linstone, 1993; Courtney, 2001). Decision environments such as these are decidedly wicked (Rittel and Webber, 1973). Designing decision support systems in such environments where there is a high level of interconnectedness, issues are overlapping and a multiplicity of stakeholders is involved, is a very complex task. In this dissertation a methodology for the development of a DSS for wicked situations is proposed using the design theory building process suggested by Walls et al. (1992). This proposed theory is based on dialectic theory and the multiple perspective approach suggested by Linstone and Mitroff (1993). The design process consists of identifying relevant stakeholders, their respective worldviews, and conflicts in these worldviews. A design (thesis) and counter design (antithesis) are created, and a prototype systems based on these designs are developed. These prototypes are then presented to the different stakeholder groups who engage in a dialogue which leads to the development of a synthesized design. The process is repeated until all conflicts are resolved or resources are exhausted, and a final system is produced. Using action research and system development research methodologies, the proposed design theory was applied to zoning decision process in Orange County, Florida. The results of this study led to the following: 1. It is feasible to implement the MPDP methodology proposed in this dissertation. 2. The MPDP methodology resulted in a synthesized design that accommodates the different views of the stakeholders. 3. The MPDP methodology is suitable for contentious situations and may not be feasible for structured decisions. 4. Most of the subjects did achieve a more understanding of the decision process. These results suggest that the MPDP design theory can be effective in developing decision support systems in contentious situations

    A REVIEW OF PROBLEMS AND CHALLENGES OF USING MULTIPLE CONCEPTUAL MODELS

    Get PDF
    Conceptual models are used to visualise, envisage, and communicate the requirements, structure, and behaviour of a system. Particularly, during design and analysis phases, a model can serve as a tool to recognise different components, elements, actors, and relationships involved in a system. However, as a domain becomes complex, multiple models are needed to capture different aspects of a system. Further, each conceptual model develops using different grammars, methods, and tools. Therefore, using multiple models to represent a complex system may result in several problems, and challenges. This research aims to identify, analyse, and classify the different problems and issues encountered when using multiple models during information systems analysis and design through a structured literature review. Several problems are identified and are classified into seven main categories based on their common characteristics. The results of this study may serve as a baseline information for researchers in further understand-ing different modelling approaches and how multiple models can be used in harmony and reduce risks and issues. Also, the list of problems gathered will give insights to professionals on which issues they may possibly encounter when inter-relating various models

    Verificação facial em duas etapas para dispositivos móveis

    Get PDF
    Orientadores: Jacques Wainer, Fernanda Alcântara AndalóDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Dispositivos móveis, como smartphones e tablets, se tornaram mais populares e acessíveis nos últimos anos. Como consequência de sua ubiquidade, esses aparelhos guardam diversos tipos de informações pessoais (fotos, conversas de texto, coordenadas GPS, dados bancários, entre outros) que só devem ser acessadas pelo dono do dispositivo. Apesar de métodos baseados em conhecimento, como senhas numéricas ou padrões, ainda estejam entre as principais formas de assegurar a identidade do usuário, traços biométricos tem sido utilizados para garantir uma autenticação mais segura e prática. Entre eles, reconhecimento facial ganhou atenção nos últimos anos devido aos recentes avanços nos dispositivos de captura de imagens e na crescente disponibilidade de fotos em redes sociais. Aliado a isso, o aumento de recursos computacionais, com múltiplas CPUs e GPUs, permitiu o desenvolvimento de modelos mais complexos e robustos, como redes neurais profundas. Porém, apesar da evolução das capacidades de dispositivos móveis, os métodos de reconhecimento facial atuais ainda não são desenvolvidos considerando as características do ambiente móvel, como processamento limitado, conectividade instável e consumo de bateria. Neste trabalho, nós propomos um método de verificação facial otimizado para o ambiente móvel. Ele consiste em um procedimento em dois níveis que combina engenharia de características (histograma de gradientes orientados e análise de componentes principais por regiões) e uma rede neural convolucional para verificar se o indivíduo presente em uma imagem corresponde ao dono do dispositivo. Nós também propomos a \emph{Hybrid-Fire Convolutional Neural Network}, uma arquitetura ajustada para dispositivos móveis que processa informação de pares de imagens. Finalmente, nós apresentamos uma técnica para adaptar o limiar de aceitação do método proposto para imagens com características diferentes daquelas presentes no treinamento, utilizando a galeria de imagens do dono do dispositivo. A solução proposta se compara em acurácia aos métodos de reconhecimento facial do estado da arte, além de possuir um modelo 16 vezes menor e 4 vezes mais rápido ao processar uma imagem em smartphones modernos. Por último, nós também organizamos uma base de dados composta por 2873 selfies de 56 identidades capturadas em condições diversas, a qual esperamos que ajude pesquisas futuras realizadas neste cenárioAbstract: Mobile devices, such as smartphones and tablets, had their popularity and affordability greatly increased in recent years. As a consequence of their ubiquity, these devices now carry all sorts of personal data (\emph{e.g.} photos, text conversations, GPS coordinates, banking information) that should be accessed only by the device's owner. Even though knowledge-based procedures, such as entering a PIN or drawing a pattern, are still the main methods to secure the owner's identity, recently biometric traits have been employed for a more secure and effortless authentication. Among them, face recognition has gained more attention in past years due to recent improvements in image-capturing devices and the availability of images in social networks. In addition to that, the increase in computational resources, with multiple CPUs and GPUs, enabled the design of more complex and robust models, such as deep neural networks. Although the capabilities of mobile devices have been growing in past years, most recent face recognition techniques are still not designed considering the mobile environment's characteristics, such as limited processing power, unstable connectivity and battery consumption. In this work, we propose a facial verification method optimized to the mobile environment. It consists of a two-tiered procedure that combines hand-crafted features (histogram of oriented gradients and local region principal component analysis) and a convolutional neural network to verify if the person depicted in a picture corresponds to the device owner. We also propose \emph{Hybrid-Fire Convolutional Neural Network}, an architecture tweaked for mobile devices that process encoded information of a pair of face images. Finally, we expose a technique to adapt our method's acceptance thresholds to images with different characteristics than those present during training, by using the device owner's enrolled gallery. The proposed solution performs a par to the state-of-the-art face recognition methods, while having a model 16 times smaller and 4 times faster when processing an image in recent smartphone models. Finally, we have collected a new dataset of selfie pictures comprising 2873 images from 56 identities with varied capture conditions, that hopefully will support future researches in this scenarioMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    Aligning Global and Local Aspects of A National Information Programme for Health: Developing a Critical and Socio-Technical Appreciation

    Get PDF
    Written by a full-time clinician, this thesis explores an example of ‘Big IT’ in healthcare, the National Programme for IT in the United Kingdom National Health Service. It is unique in exploring the interaction between people and information technology in the healthcare workplace, from an engaged standpoint within one of the National Programme’s implementation sites, in order to provide a critical and a socio-technical appreciation

    Human behavior understanding for worker-centered intelligent manufacturing

    Get PDF
    “In a worker-centered intelligent manufacturing system, sensing and understanding of the worker’s behavior are the primary tasks, which are essential for automatic performance evaluation & optimization, intelligent training & assistance, and human-robot collaboration. In this study, a worker-centered training & assistant system is proposed for intelligent manufacturing, which is featured with self-awareness and active-guidance. To understand the hand behavior, a method is proposed for complex hand gesture recognition using Convolutional Neural Networks (CNN) with multiview augmentation and inference fusion, from depth images captured by Microsoft Kinect. To sense and understand the worker in a more comprehensive way, a multi-modal approach is proposed for worker activity recognition using Inertial Measurement Unit (IMU) signals obtained from a Myo armband and videos from a visual camera. To automatically learn the importance of different sensors, a novel attention-based approach is proposed to human activity recognition using multiple IMU sensors worn at different body locations. To deploy the developed algorithms to the factory floor, a real-time assembly operation recognition system is proposed with fog computing and transfer learning. The proposed worker-centered training & assistant system has been validated and demonstrated the feasibility and great potential for applying to the manufacturing industry for frontline workers. Our developed approaches have been evaluated: 1) the multi-view approach outperforms the state-of-the-arts on two public benchmark datasets, 2) the multi-modal approach achieves an accuracy of 97% on a worker activity dataset including 6 activities and achieves the best performance on a public dataset, 3) the attention-based method outperforms the state-of-the-art methods on five publicly available datasets, and 4) the developed transfer learning model achieves a real-time recognition accuracy of 95% on a dataset including 10 worker operations”--Abstract, page iv
    corecore