83 research outputs found

    Robust Object Detection with Real-Time Fusion of Multiview Foreground Silhouettes

    Get PDF

    A Sparsity Constrained Inverse Problem to Locate People in a Network of Cameras

    Get PDF
    A novel approach is presented to locate dense crowd of people in a network of fixed cameras given the severely degraded background subtracted silhouettes. The problem is formulated as a sparsity constrained inverse problem using an adaptive dictionary constructed on- line. The framework has no constraint on the number of cameras neither on the surface to be monitored. Even with a single camera, partially occluded and grouped people are correctly detected and segmented. Qualitative results are presented in indoor and outdoor scenes

    Geometry-Based Multiple Camera Head Detection in Dense Crowds

    Full text link
    This paper addresses the problem of head detection in crowded environments. Our detection is based entirely on the geometric consistency across cameras with overlapping fields of view, and no additional learning process is required. We propose a fully unsupervised method for inferring scene and camera geometry, in contrast to existing algorithms which require specific calibration procedures. Moreover, we avoid relying on the presence of body parts other than heads or on background subtraction, which have limited effectiveness under heavy clutter. We cast the head detection problem as a stereo MRF-based optimization of a dense pedestrian height map, and we introduce a constraint which aligns the height gradient according to the vertical vanishing point direction. We validate the method in an outdoor setting with varying pedestrian density levels. With only three views, our approach is able to detect simultaneously tens of heavily occluded pedestrians across a large, homogeneous area.Comment: Proceedings of the 28th British Machine Vision Conference (BMVC) - 5th Activity Monitoring by Multiple Distributed Sensing Workshop, 201

    A framework for evaluating stereo-based pedestrian detection techniques

    Get PDF
    Automated pedestrian detection, counting, and tracking have received significant attention in the computer vision community of late. As such, a variety of techniques have been investigated using both traditional 2-D computer vision techniques and, more recently, 3-D stereo information. However, to date, a quantitative assessment of the performance of stereo-based pedestrian detection has been problematic, mainly due to the lack of standard stereo-based test data and an agreed methodology for carrying out the evaluation. This has forced researchers into making subjective comparisons between competing approaches. In this paper, we propose a framework for the quantitative evaluation of a short-baseline stereo-based pedestrian detection system. We provide freely available synthetic and real-world test data and recommend a set of evaluation metrics. This allows researchers to benchmark systems, not only with respect to other stereo-based approaches, but also with more traditional 2-D approaches. In order to illustrate its usefulness, we demonstrate the application of this framework to evaluate our own recently proposed technique for pedestrian detection and tracking

    Sparsity Driven People Localization with a Heterogeneous Network of Cameras

    Get PDF
    This paper addresses the problem of localizing people in low and high density crowds with a network of heterogeneous cameras. The problem is recast as a linear inverse problem. It relies on deducing the discretized occupancy vector of people on the ground, from the noisy binary silhouettes observed as foreground pixels in each camera. This inverse problem is regularized by imposing a sparse occupancy vector, i.e., made of few non-zero elements, while a particular dictionary of silhouettes linearly maps these non-empty grid locations to the multiple silhouettes viewed by the cameras network. The proposed framework is (i) generic to any scene of people, i.e., people are located in low and high density crowds, (ii) scalable to any number of cameras and already working with a single camera, (iii) unconstrained by the scene surface to be monitored, and (iv) versatile with respect to the camera's geometry, e.g., planar or omnidirectional. Qualitative and quantitative results are presented on the APIDIS and the PETS 2009 Benchmark datasets. The proposed algorithm successfully detects people occluding each other given severely degraded extracted features, while outperforming state-of-the-art people localization technique

    Sparsity Driven People Localization with a Heterogeneous Network of Cameras

    Get PDF
    In this paper, we propose to study the problem of localization of a dense set of people with a network of heterogeneous cameras. We propose to recast the problem as a linear inverse problem. The proposed framework is generic to any scene, scalable in the number of cameras and versatile with respect to their geometry, e.g. planar or omnidirectional. It relies on deducing an \emph {occupancy vector}, i.e. the discretized occupancy of people on the ground, from the noisy binary silhouettes observed as foreground pixels in each camera. This inverse problem is regularized by imposing a sparse occupancy vector, i.e. made of few non- zero elements, while a particular dictionary of silhouettes linearly maps these non-empty grid locations to the multiple silhouettes viewed by the cameras network. This constitutes a linearization of the problem, where non- linearities, such as occlusions, are treated as additional noise on the observed silhouettes. Mathematically, we express the final inverse problem either as Basis Pursuit DeNoise or Lasso convex optimization programs. The sparsity measure is reinforced by iteratively re-weighting the 1\ell_1-norm of the occupancy vector for better approximating its 0\ell_0 ``norm'', and a new kind of ``repulsive'' sparsity is used to adapt further the Lasso procedure to the occupancy reconstruction. Practically, an adaptive sampling process is proposed to reduce the computation cost and monitor a large occupancy area. Qualitative and quantitative results are presented on a basketball game. The proposed algorithm successfully detects people occluding each other given severely degraded extracted features, while outperforming state-of-the-art people localization techniques
    corecore