7 research outputs found

    Author index

    Get PDF

    A comparative study of transaction management services in multidatabase heterogeneous systems

    Get PDF
    Multidatabases are being actively researched as a relatively new area in which many aspects are not yet fully understood. This area of transaction management in multidatabase systems still has many unresolved problems. The problem areas which this dissertation addresses are classification of multidatabase systems, global concurrency control, correctness criterion in a multidatabase environment, global deadlock detection, atomic commitment and crash recovery. A core group of research addressing these problems was identified and studied. The dissertation contributes to the multidatabase transaction management topic by introducing an alternative classification method for such multiple database systems; assessing existing research into transaction management schemes and based on this assessment, proposes a transaction processing model founded on the optimal properties of transaction management identified during the course of this research.ComputingM. Sc. (Computer Science

    Staring into the abyss: An evaluation of concurrency control with one thousand cores

    Get PDF
    Computer architectures are moving towards an era dominated by many-core machines with dozens or even hundreds of cores on a single chip. This unprecedented level of on-chip parallelism introduces a new dimension to scalability that current database management systems (DBMSs) were not designed for. In particular, as the number of cores increases, the problem of concurrency control becomes extremely challenging. With hundreds of threads running in parallel, the complexity of coordinating competing accesses to data will likely diminish the gains from increased core counts. To better understand just how unprepared current DBMSs are for future CPU architectures, we performed an evaluation of concurrency control for on-line transaction processing (OLTP) workloads on many-core chips. We implemented seven concurrency control algorithms on a main-memory DBMS and using computer simulations scaled our system to 1024 cores. Our analysis shows that all algorithms fail to scale to this magnitude but for different reasons. In each case, we identify fundamental bottlenecks that are independent of the particular database implementation and argue that even state-of-the-art DBMSs suffer from these limitations. We conclude that rather than pursuing incremental solutions, many-core chips may require a completely redesigned DBMS architecture that is built from ground up and is tightly coupled with the hardware.Intel Corporation (Science and Technology Center for Big Data

    Master index: volumes 31–40

    Get PDF
    corecore