3,054 research outputs found

    Structure learning of graphical models for task-oriented robot grasping

    Get PDF
    In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it

    Learning Bayesian Networks from Ordinal Data

    Get PDF
    Bayesian networks are a powerful framework for studying the dependency structure of variables in a complex system. The problem of learning Bayesian networks is tightly associated with the given data type. Ordinal data, such as stages of cancer, rating scale survey questions, and letter grades for exams, are ubiquitous in applied research. However, existing solutions are mainly for continuous and nominal data. In this work, we propose an iterative score-and-search method - called the Ordinal Structural EM (OSEM) algorithm - for learning Bayesian networks from ordinal data. Unlike traditional approaches designed for nominal data, we explicitly respect the ordering amongst the categories. More precisely, we assume that the ordinal variables originate from marginally discretizing a set of Gaussian variables, whose structural dependence in the latent space follows a directed acyclic graph. Then, we adopt the Structural EM algorithm and derive closed-form scoring functions for efficient graph searching. Through simulation studies, we illustrate the superior performance of the OSEM algorithm compared to the alternatives and analyze various factors that may influence the learning accuracy. Finally, we demonstrate the practicality of our method with a real-world application on psychological survey data from 408 patients with co-morbid symptoms of obsessive-compulsive disorder and depression
    • …
    corecore