12 research outputs found

    A multivariant stream analysis approach to detect and mitigate DDoS attacks in vehicular ad hoc networks

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are rapidly gaining attention due to the diversity of services that they can potentially offer. However, VANET communication is vulnerable to numerous security threats such as Distributed Denial of Service (DDoS) attacks. Dealing with these attacks in VANET is a challenging problem. Most of the existing DDoS detection techniques suffer from poor accuracy and high computational overhead. To cope with these problems, we present a novel Multivariant Stream Analysis (MVSA) approach. The proposed MVSA approach maintains the multiple stages for detection DDoS attack in network. The Multivariant Stream Analysis gives unique result based on the Vehicle-to-Vehicle communication through Road Side Unit. The approach observes the traffic in different situations and time frames and maintains different rules for various traffic classes in various time windows. The performance of the MVSA is evaluated using an NS2 simulator. Simulation results demonstrate the effectiveness and efficiency of the MVSA regarding detection accuracy and reducing the impact on VANET communication. © 2018 Raenu Kolandaisamy et al. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record*

    RSU-Based Online Intrusion Detection and Mitigation for VANET

    Full text link
    Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting the integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel statistical intrusion detection and mitigation techniques based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods are evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior performance of the proposed methods in terms of quick and accurate detection and localization of cyberattacks

    Information fusion-based cybersecurity threat detection for intelligent transportation system

    Get PDF
    Intelligent Transportation Systems (ITS) are sophisticated systems that leverage various technologies to increase the safety, efficiency, and sustainability of transportation. By relying on wireless communication and data collected from diverse sensors, ITS is vulnerable to cybersecurity threats. With the increasing number of attacks on ITS worldwide, detecting and addressing cybersecurity threats has become critically important. This need will only intensify with the impending arrival of autonomous vehicles. One of the primary challenges is identifying critical ITS assets that require protection and understanding the vulnerabilities that cyber attackers can exploit. Additionally, creating a standard profile for ITS is challenging due to the dynamic traffic pattern, which exhibits changes in the movement of vehicles over time. To address these challenges, this paper proposes an information fusion-based cybersecurity threat detection method. Specifically, we employ the Kalman filter for noise reduction, Dempster-Shafer decision theory and Shannon’s entropy for assessing the probabilities of traffic conditions being normal, intruded, and uncertain. We utilised Simulation of Urban Mobility (SUMO) to simulate the Melbourne CBD map and historical traffic data from the Victorian transport authority. Our simulation results reveal that information fusion with three sensor data is more effective in detecting normal traffic conditions. On the other hand, for detecting anomalies, information fusion with two sensor data is more efficient

    Implementation of DoS and DDoS attacks on cloud servers

    Get PDF
    Cloud environments face many threats as traditional corporate networks, but due to the vast amount of data stored on cloud servers, providers become an attractive target. Thus the security level of data on the cloud servers is always a key issue from preventing potential attacks. This paper intends to show a relatively easy way to implement a Denial of Service (DoS) attack and/or a Distributed Denial of Service (DDoS) attack. The used Phyton scripts like HULK or XML-RPC are able to make several hundred requests to the server in short period of time. The HULK is better for DoS attack, while XML-RPC is for pure DDoS attack. It is concluded that with proper tools and applications, the access to the VM and DDoS can be implemented relatively easy way

    On Detection of Sybil Attack in Large-Scale VANETs Using Spider-Monkey Technique

    Get PDF
    Sybil security threat in vehicular ad hoc networks (VANETs) has attracted much attention in recent times. The attacker introduces malicious nodes with multiple identities. As the roadside unit fails to synchronize its clock with legitimate vehicles, unintended vehicles are identified, and therefore erroneous messages will be sent to them. This paper proposes a novel biologically inspired spider-monkey time synchronization technique for large-scale VANETs to boost packet delivery time synchronization at minimized energy consumption. The proposed technique is based on the metaheuristic stimulated framework approach by the natural spider-monkey behavior. An artificial spider-monkey technique is used to examine the Sybil attacking strategies on VANETs to predict the number of vehicular collisions in a densely deployed challenge zone. Furthermore, this paper proposes the pseudocode algorithm randomly distributed for energy-efficient time synchronization in two-way packet delivery scenarios to evaluate the clock offset and the propagation delay in transmitting the packet beacon message to destination vehicles correctly. The performances of the proposed technique are compared with existing protocols. It performs better over long transmission distances for the detection of Sybil in dynamic VANETs' system in terms of measurement precision, intrusion detection rate, and energy efficiency

    Novel framework using dynamic passphrase towards secure and energy-efficient communication in MANET

    Get PDF
    At Mobile Adhoc Network (MANET) has been long-researched topic in adhoc network owing to the associated advantages in its cost-effective application as well as consistent loophopes owing to its inherent charecteristics. This manuscript draws a relationship between the energy factor and security factor which has not been emphasized in any existing studies much. Review of existing security approaches shows that they are highly attack specific, uses complex encryption, and overlooks the involvement of energy factor in it. Therefore, the proposed system introduces a novel mechanism where security tokens and passphrases are utilized in order to offer better security. The proposed system also introduces the usage of an agent node which communications with mobile nodes using group-based communication system thereby ensuring reduced computational effort of mobile nodes towards establishing secured communication. The outcome shows proposed system offers better outcome in contrast to existing system

    Attacks on self-driving cars and their countermeasures : a survey

    Get PDF
    Intelligent Traffic Systems (ITS) are currently evolving in the form of a cooperative ITS or connected vehicles. Both forms use the data communications between Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I/I2V) and other on-road entities, and are accelerating the adoption of self-driving cars. The development of cyber-physical systems containing advanced sensors, sub-systems, and smart driving assistance applications over the past decade is equipping unmanned aerial and road vehicles with autonomous decision-making capabilities. The level of autonomy depends upon the make-up and degree of sensor sophistication and the vehicle's operational applications. As a result, self-driving cars are being compromised perceived as a serious threat. Therefore, analyzing the threats and attacks on self-driving cars and ITSs, and their corresponding countermeasures to reduce those threats and attacks are needed. For this reason, some survey papers compiling potential attacks on VANETs, ITSs and self-driving cars, and their detection mechanisms are available in the current literature. However, up to our knowledge, they have not covered the real attacks already happened in self-driving cars. To bridge this research gap, in this paper, we analyze the attacks that already targeted self-driving cars and extensively present potential cyber-Attacks and their impacts on those cars along with their vulnerabilities. For recently reported attacks, we describe the possible mitigation strategies taken by the manufacturers and governments. This survey includes recent works on how a self-driving car can ensure resilient operation even under ongoing cyber-Attack. We also provide further research directions to improve the security issues associated with self-driving cars. © 2013 IEEE

    Enhancing service quality and reliability in intelligent traffic system

    Get PDF
    Intelligent Traffic Systems (ITS) can manage on-road traffic efficiently based on real-time traffic conditions, reduce delay at the intersections, and maintain the safety of the road users. However, emergency vehicles still struggle to meet their targeted response time, and an ITS is vulnerable to various types of attacks, including cyberattacks. To address these issues, in this dissertation, we introduce three techniques that enhance the service quality and reliability of an ITS. First, an innovative Emergency Vehicle Priority System (EVPS) is presented to assist an Emergency Vehicle (EV) in attending the incident place faster. Our proposed EVPS determines the proper priority codes of EV based on the type of incidents. After priority code generation, EVPS selects the number of traffic signals needed to be turned green considering the impact on other vehicles gathered in the relevant adjacent cells. Second, for improving reliability, an Intrusion Detection System for traffic signals is proposed for the first time, which leverages traffic and signal characteristics such as the flow rate, vehicle speed, and signal phase time. Shannon’s entropy is used to calculate the uncertainty associated with the likelihood of particular evidence and Dempster-Shafer (DS) decision theory is used to fuse the evidential information. Finally, to improve the reliability of a future ITS, we introduce a model that assesses the trust level of four major On-Board Units (OBU) of a self-driving car along with Global Positioning System (GPS) data and safety messages. Both subjective logic (DS theory) and CertainLogic are used to develop the theoretical underpinning for estimating the trust value of a self-driving car by fusing the trust value of four OBU components, GPS data and safety messages. For evaluation and validation purposes, a popular and widely used traffic simulation package, namely Simulation of Urban Mobility (SUMO), is used to develop the simulation platform using a real map of Melbourne CBD. The relevant historical real data taken from the VicRoads website were used to inject the traffic flow and density in the simulation model. We evaluated the performance of our proposed techniques considering different traffic and signal characteristics such as occupancy rate, flow rate, phase time, and vehicle speed under many realistic scenarios. The simulation result shows the potential efficacy of our proposed techniques for all selected scenarios.Doctor of Philosoph
    corecore