151 research outputs found

    Multiuser Millimeter Wave Beamforming Strategies with Quantized and Statistical CSIT

    Full text link
    To alleviate the high cost of hardware in mmWave systems, hybrid analog/digital precoding is typically employed. In the conventional two-stage feedback scheme, the analog beamformer is determined by beam search and feedback to maximize the desired signal power of each user. The digital precoder is designed based on quantization and feedback of effective channel to mitigate multiuser interference. Alternatively, we propose a one-stage feedback scheme which effectively reduces the complexity of the signalling and feedback procedure. Specifically, the second-order channel statistics are leveraged to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. Under a fixed total feedback constraint, we investigate the conditions under which the one-stage feedback scheme outperforms the conventional two-stage counterpart. Moreover, a rate splitting (RS) transmission strategy is introduced to further tackle the multiuser interference and enhance the rate performance. Consider (1) RS precoded by the one-stage feedback scheme and (2) conventional transmission strategy precoded by the two-stage scheme with the same first-stage feedback as (1) and also certain amount of extra second-stage feedback. We show that (1) can achieve a sum rate comparable to that of (2). Hence, RS enables remarkable saving in the second-stage training and feedback overhead.Comment: submitted to TW

    Multi-user spatial diversity techniques for wireless communication systems

    Get PDF
    Multiple antennas at the transmitter and receiver, formally known as multiple-input multiple-output (MIMO) systems have the potential to either increase the data rates through spatial multiplexing or enhance the quality of services through exploitation of diversity. In this thesis, the problem of downlink spatial multiplexing, where a base station (BS) serves multiple users simultaneously in the same frequency band is addressed. Spatial multiplexing techniques have the potential to make huge saving in the bandwidth utilization. We propose spatial diversity techniques with and without the assumption of perfect channel state information (CSI) at the transmitter. We start with proposing improvement to signal-to-leakage ratio (SLR) maximization based spatial multiplexing techniques for both fiat fading and frequency selective channels. [Continues.

    Robust transmit beamforming design using outage probability specification

    Get PDF
    Transmit beamforming (precoding) is a powerful technique for enhancing the channel capacity and reliability of multiple-input and multiple-output (MIMO) wireless systems. The optimum exploitation of the benefits provided by MIMO systems can be achieved when a perfect channel state information at transmitter (CSIT) is available. In practices, however, the channel knowledge is generally imperfect at transmitter because of the inevitable errors induced by finite feedback channel capacity, quantization and other physical constraints. Such errors degrade the system performance severely. Hence, robustness has become a crucial issue. Current robust designs address the channel imperfections with the worst-case and stochastic approaches. In worst-case analysis, the channel uncertainties are considered as deterministic and norm-bounded, and the resulting design is a conservative optimization that guarantees a certain quality of service (QoS) for every allowable perturbation. The latter approach focuses on the average performance under the assumption of channel statistics, such as mean and covariance. The system performance could break down when persistent extreme errors occur. Thus, an outage probability-based approach is developed by keeping a low probability that channel condition falls below an acceptable level. Compared to the aforementioned methods, this approach can optimize the average performance as well as consider the extreme scenarios proportionally. This thesis implements the outage-probability specification into transmit beamforming design for three scenarios: the single-user MIMO system and the corresponding adaptive modulation scheme as well as the multi-user MIMO system. In a single-user MIMO system, the transmit beamformer provides the maximum average received SNR and ensures the robustness to the CSIT errors by introducing probabilistic constraint on the instantaneous SNR. Beside the robustness against channel imperfections, the outage probability-based approach also provides a tight BER bound for adaptive modulation scheme, so that the maximum transmission rate can be achieved by taking advantage of transmit beamforming. Moreover, in multi-user MIMO (MU-MIMO) systems, the leakage power is accounted by probability measurement. The resulting transmit beamformer is designed based on signal-to-leakage-plus-noise ratio (SLNR) criteria, which maximizes the average received SNR and guarantees the least leakage energy from the desired user. In such a setting, an outstanding BER performance can be achieved as well as high reliability of signal-to-interference-plus-noise ratio (SINR). Given the superior overall performances and significantly improved robustness, the probabilistic approach provides an attractive alternative to existing robust techniques under imperfect channel information at transmitter

    A Hierarchical Rate Splitting Strategy for FDD Massive MIMO under Imperfect CSIT

    Full text link
    In a multiuser MIMO broadcast channel, the rate performance is affected by the multiuser interference when the Channel State Information at the Transmitter (CSIT) is imperfect. To tackle the interference problem, a Rate-Splitting (RS) approach has been proposed recently, which splits one user's message into a common and a private part, and superimposes the common message on top of the private messages. The common message is drawn from a public codebook and should be decoded by all users. In this paper, we propose a novel and general framework, denoted as Hierarchical Rate Splitting (HRS), that is particularly suited to FDD massive MIMO systems. HRS simultaneously transmits private messages intended to each user and two kinds of common messages that can be decoded by all users and by a subset of users, respectively. We analyse the asymptotic sum rate of HRS under imperfect CSIT. A closed-form power allocation is derived which provides insights into the effects of system parameters. Finally, simulation results validate the significant sum rate gain of HRS over various baselines.Comment: Accepted paper at IEEE CAMAD 201

    Mathematical optimization and signal processing techniques for cooperative wireless networks

    Get PDF
    The rapid growth of mobile users and emergence of high data rate multimedia and interactive services have resulted in a shortage of the radio spectrum. Novel solutions are therefore required for future generations of wireless networks to enhance capacity and coverage. This thesis aims at addressing this issue through the design and analysis of signal processing algorithms. In particular various resource allocation and spatial diversity techniques have been proposed within the context of wireless peer-to-peer relays and coordinated base station (BS) processing. In order to enhance coverage while providing improvement in capacity, peer-to-peer relays that share the same frequency band have been considered and various techniques for designing relay coefficients and allocating powers optimally are proposed. Both one-way and two-way amplify and forward (AF) relays have been investigated. In order to maintain fairness, a signal-to-interference plus noise ratio (SINR) balancing criterion has been adopted. In order to improve the spectrum utilization further, the relays within the context of cognitive radio network are also considered. In this case, a cognitive peer-to-peer relay network is required to achieve SINR balancing while maintaining the interference leakage to primary receiver below a certain threshold. As the spatial diversity techniques in the form of multiple-input-multipleoutput (MIMO) systems have the potential to enhance capacity significantly, the above work has been extended to peer-to-peer MIMO relay networks. Transceiver and relay beamforming design based on minimum mean-square error (MSE) criterion has been proposed. Establishing uplink downlink MSE duality, an alternating algorithm has been developed. A scenario where multiple users are served by both the BS and a MIMO relay is considered and a joint beamforming technique for the BS and the MIMO relay is proposed. With the motivation of optimising the transmission power at both the BS and the relay, an interference precoding design is presented that takes into account the knowledge of the interference caused by the relay to the users served by the BS. Recognizing joint beamformer design for multiple BSs has the ability to reduce interference in the network significantly, cooperative multi-cell beamforming design is proposed. The aim is to design multi-cell beamformers to maximize the minimum SINR of users subject to individual BS power constraints. In contrast to all works available in the literature that aimed at balancing SINR of all users in all cells to the same level, the SINRs of users in each cell is balanced and maximized at different values. This new technique takes advantage of the fact that BSs may have different available transmission powers and/or channel conditions for their users
    • …
    corecore