39 research outputs found

    Sharing Linkable Learning Objects with the use of Metadata and a Taxonomy Assistant for Categorization

    Full text link
    In this work, a re-design of the Moodledata module functionalities is presented to share learning objects between e-learning content platforms, e.g., Moodle and G-Lorep, in a linkable object format. The e-learning courses content of the Drupal-based Content Management System G-Lorep for academic learning is exchanged designing an object incorporating metadata to support the reuse and the classification in its context. In such an Artificial Intelligence environment, the exchange of Linkable Learning Objects can be used for dialogue between Learning Systems to obtain information, especially with the use of semantic or structural similarity measures to enhance the existent Taxonomy Assistant for advanced automated classification

    Founder cell configuration drives competitive outcome within colony biofilms

    Get PDF
    Bacteria can form dense communities called biofilms, where cells are embedded in a self-produced extracellular matrix. Exploiting competitive interactions between strains within the biofilm context can have potential applications in biological, medical, and industrial systems. By combining mathematical modelling with experimental assays, we reveal that spatial structure and competitive dynamics within biofilms are significantly affected by the location and density of the founder cells used to inoculate the biofilm. Using a species-independent theoretical framework describing colony biofilm formation, we show that the observed spatial structure and relative strain biomass in a mature biofilm comprising two isogenic strains can be mapped directly to the geographical distributions of founder cells. Moreover, we define a predictor of competitive outcome that accurately forecasts relative abundance of strains based solely on the founder cells’ potential for radial expansion. Consequently, we reveal that variability of competitive outcome in biofilms inoculated at low founder density is a natural consequence of the random positioning of founding cells in the inoculum. Extension of our study to non-isogenic strains that interact through local antagonisms, shows that even for strains with different competition strengths, a race for space remains the dominant mode of competition in low founder density biofilms. Our results, verified by experimental assays using Bacillus subtilis, highlight the importance of spatial dynamics on competitive interactions within biofilms and hence to related applications

    Oral Health by Using Probiotic Products

    Get PDF
    One of the most prevalent and important health problems in the world is periodontal and plaque-related diseases for which antibiotic drugs with their associated side effects are used as treatment. With increasing resistance to antibiotics and a desire from the general public for "natural" therapies, there is a need to minimize antibiotic use and develop new treatments for oral diseases without antimicrobial agents. Probiotics are viable microorganisms that provide a health benefit to the host when administered in adequate amounts; studies show that probiotics have the potential to modify the oral microbiota and decrease the colony-forming unit counts of the oral pathogens being investigated to prevent or treat oral diseases, such as dental caries and the periodontal diseases. In addition, the identification of specific strains with probiotic activity is required for any oral infectious disease to determine the exact dose, the time of treatment, and the ideal vehicle

    Investigation of sequential outbreaks of Burkholderia cepacia and multidrug-resistant extended spectrum ÎČ-lactamase producing Klebsiella species in a West African tertiary hospital neonatal unit: a retrospective genomic analysis

    Get PDF
    Background Sick newborns admitted to neonatal units in low-resource settings are at an increased risk of developing hospital-acquired infections due to poor clinical care practices. Clusters of infection, due to the same species, with a consistent antibiotic resistance profile, and in the same ward over a short period of time might be indicative of an outbreak. We used whole-genome sequencing (WGS) to define the transmission pathways and characterise two distinct outbreaks of neonatal bacteraemia in a west African neonatal unit. Methods We studied two outbreaks of Burkholderia cepacia and multidrug-resistant extended spectrum ÎČ-lactamase (ESBL)-producing Klebsiella pneumoniae in a neonatal unit that provides non-intensive care on the neonatal ward in the Edward Francis Small Teaching Hospital, Banjul, The Gambia. We used WGS to validate and expand findings from the outbreak investigation. We retrospectively sequenced all clinical isolates associated with each outbreak, including isolates obtained from swabs of ward surfaces, environmental fluid cultures, intravenous fluids, and antibiotics administered to newborns. We also sequenced historical B cepacia isolates associated with neonatal sepsis in the same ward. Results Between March 1 and Dec 31, 2016, 321 blood cultures were done, of which 178 (55%) were positive with a clinically significant isolate. 49 episodes of neonatal B cepacia bacteraemia and 45 episodes of bacteraemia due to ESBL-producing K pneumoniae were reported. WGS revealed the suspected K pneumoniae outbreak to be contemporaneous outbreaks of K pneumoniae (ST39) and previously unreported Klebsiella quasipneumoniae subspecies similipneumoniae (ST1535). Genomic analysis showed near-identical strain clusters for each of the three outbreak pathogens, consistent with transmission within the neonatal ward from extrinsically contaminated in-use intravenous fluids and antibiotics. Time-dated phylogeny, including retrospective analysis of archived bacterial strains, suggest B cepacia has been endemic in the neonatal ward over several years, with the Klebsiella species a more recent introduction. Interpretation Our study highlights the emerging threat of previously unreported strains of multidrug-resistant Klebsiella species in this neonatal unit. Genome-based surveillance studies can improve identification of circulating pathogen strains, characterisation of antimicrobial resistance, and help understand probable infection acquisition routes during outbreaks in newborn units in low-resource settings. Our data provide evidence for the need to regularly monitor endemic transmission of bacteria within the hospital setting, identify the introduction of resistant strains from the community, and improve clinical practices to reduce or prevent the spread of infection and resistance

    Systems biology of lactic acid bacteria: a critical review

    Get PDF
    Understanding the properties of a system as emerging from the interaction of well described parts is the most important goal of Systems Biology. Although in the practice of Lactic Acid Bacteria (LAB) physiology we most often think of the parts as the proteins and metabolites, a wider interpretation of what a part is can be useful. For example, different strains or species can be the parts of a community, or we could study only the chemical reactions as the parts of metabolism (and forgetting about the enzymes that catalyze them), as is done in flux balance analysis. As long as we have some understanding of the properties of these parts, we can investigate whether their interaction leads to novel or unanticipated behaviour of the system that they constitute

    Computational Biology and Chemistry

    Get PDF
    The use of computers and software tools in biochemistry (biology) has led to a deep revolution in basic sciences and medicine. Bioinformatics and systems biology are the direct results of this revolution. With the involvement of computers, software tools, and internet services in scientific disciplines comprising biology and chemistry, new terms, technologies, and methodologies appeared and established. Bioinformatic software tools, versatile databases, and easy internet access resulted in the occurrence of computational biology and chemistry. Today, we have new types of surveys and laboratories including “in silico studies” and “dry labs” in which bioinformaticians conduct their investigations to gain invaluable outcomes. These features have led to 3-dimensioned illustrations of different molecules and complexes to get a better understanding of nature
    corecore