1,844 research outputs found

    Frequency-Aware Transformer for Learned Image Compression

    Full text link
    Learned image compression (LIC) has gained traction as an effective solution for image storage and transmission in recent years. However, existing LIC methods are redundant in latent representation due to limitations in capturing anisotropic frequency components and preserving directional details. To overcome these challenges, we propose a novel frequency-aware transformer (FAT) block that for the first time achieves multiscale directional ananlysis for LIC. The FAT block comprises frequency-decomposition window attention (FDWA) modules to capture multiscale and directional frequency components of natural images. Additionally, we introduce frequency-modulation feed-forward network (FMFFN) to adaptively modulate different frequency components, improving rate-distortion performance. Furthermore, we present a transformer-based channel-wise autoregressive (T-CA) model that effectively exploits channel dependencies. Experiments show that our method achieves state-of-the-art rate-distortion performance compared to existing LIC methods, and evidently outperforms latest standardized codec VTM-12.1 by 14.5%, 15.1%, 13.0% in BD-rate on the Kodak, Tecnick, and CLIC datasets

    Understanding Video Transformers for Segmentation: A Survey of Application and Interpretability

    Full text link
    Video segmentation encompasses a wide range of categories of problem formulation, e.g., object, scene, actor-action and multimodal video segmentation, for delineating task-specific scene components with pixel-level masks. Recently, approaches in this research area shifted from concentrating on ConvNet-based to transformer-based models. In addition, various interpretability approaches have appeared for transformer models and video temporal dynamics, motivated by the growing interest in basic scientific understanding, model diagnostics and societal implications of real-world deployment. Previous surveys mainly focused on ConvNet models on a subset of video segmentation tasks or transformers for classification tasks. Moreover, component-wise discussion of transformer-based video segmentation models has not yet received due focus. In addition, previous reviews of interpretability methods focused on transformers for classification, while analysis of video temporal dynamics modelling capabilities of video models received less attention. In this survey, we address the above with a thorough discussion of various categories of video segmentation, a component-wise discussion of the state-of-the-art transformer-based models, and a review of related interpretability methods. We first present an introduction to the different video segmentation task categories, their objectives, specific challenges and benchmark datasets. Next, we provide a component-wise review of recent transformer-based models and document the state of the art on different video segmentation tasks. Subsequently, we discuss post-hoc and ante-hoc interpretability methods for transformer models and interpretability methods for understanding the role of the temporal dimension in video models. Finally, we conclude our discussion with future research directions

    PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection

    Full text link
    Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative context locations for each pixel. Specifically, for each pixel, it can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location. An attended contextual feature can then be constructed by selectively aggregating the contextual information. We formulate the proposed PiCANet in both global and local forms to attend to global and local contexts, respectively. Both models are fully differentiable and can be embedded into CNNs for joint training. We also incorporate the proposed models with the U-Net architecture to detect salient objects. Extensive experiments show that the proposed PiCANets can consistently improve saliency detection performance. The global and local PiCANets facilitate learning global contrast and homogeneousness, respectively. As a result, our saliency model can detect salient objects more accurately and uniformly, thus performing favorably against the state-of-the-art methods

    Detect Any Deepfakes: Segment Anything Meets Face Forgery Detection and Localization

    Full text link
    The rapid advancements in computer vision have stimulated remarkable progress in face forgery techniques, capturing the dedicated attention of researchers committed to detecting forgeries and precisely localizing manipulated areas. Nonetheless, with limited fine-grained pixel-wise supervision labels, deepfake detection models perform unsatisfactorily on precise forgery detection and localization. To address this challenge, we introduce the well-trained vision segmentation foundation model, i.e., Segment Anything Model (SAM) in face forgery detection and localization. Based on SAM, we propose the Detect Any Deepfakes (DADF) framework with the Multiscale Adapter, which can capture short- and long-range forgery contexts for efficient fine-tuning. Moreover, to better identify forged traces and augment the model's sensitivity towards forgery regions, Reconstruction Guided Attention (RGA) module is proposed. The proposed framework seamlessly integrates end-to-end forgery localization and detection optimization. Extensive experiments on three benchmark datasets demonstrate the superiority of our approach for both forgery detection and localization. The codes will be released soon at https://github.com/laiyingxin2/DADF

    Expediting Building Footprint Segmentation from High-resolution Remote Sensing Images via progressive lenient supervision

    Full text link
    The efficacy of building footprint segmentation from remotely sensed images has been hindered by model transfer effectiveness. Many existing building segmentation methods were developed upon the encoder-decoder architecture of U-Net, in which the encoder is finetuned from the newly developed backbone networks that are pre-trained on ImageNet. However, the heavy computational burden of the existing decoder designs hampers the successful transfer of these modern encoder networks to remote sensing tasks. Even the widely-adopted deep supervision strategy fails to mitigate these challenges due to its invalid loss in hybrid regions where foreground and background pixels are intermixed. In this paper, we conduct a comprehensive evaluation of existing decoder network designs for building footprint segmentation and propose an efficient framework denoted as BFSeg to enhance learning efficiency and effectiveness. Specifically, a densely-connected coarse-to-fine feature fusion decoder network that facilitates easy and fast feature fusion across scales is proposed. Moreover, considering the invalidity of hybrid regions in the down-sampled ground truth during the deep supervision process, we present a lenient deep supervision and distillation strategy that enables the network to learn proper knowledge from deep supervision. Building upon these advancements, we have developed a new family of building segmentation networks, which consistently surpass prior works with outstanding performance and efficiency across a wide range of newly developed encoder networks. The code will be released on https://github.com/HaonanGuo/BFSeg-Efficient-Building-Footprint-Segmentation-Framework.Comment: 13 pages,8 figures. Submitted to IEEE Transactions on Neural Networks and Learning System

    CINFormer: Transformer network with multi-stage CNN feature injection for surface defect segmentation

    Full text link
    Surface defect inspection is of great importance for industrial manufacture and production. Though defect inspection methods based on deep learning have made significant progress, there are still some challenges for these methods, such as indistinguishable weak defects and defect-like interference in the background. To address these issues, we propose a transformer network with multi-stage CNN (Convolutional Neural Network) feature injection for surface defect segmentation, which is a UNet-like structure named CINFormer. CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder. This can maintain the merit of CNN capturing detailed features and that of transformer depressing noises in the background, which facilitates accurate defect detection. In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects, so as to further reduce the impact of the redundant background. Extensive experiments conducted on the surface defect datasets DAGM 2007, Magnetic tile, and NEU show that the proposed CINFormer achieves state-of-the-art performance in defect detection
    • …
    corecore