163 research outputs found

    Zynq SoC based acceleration of the lattice Boltzmann method

    Get PDF
    Cerebral aneurysm is a life‐threatening condition. It is a weakness in a blood vessel that may enlarge and bleed into the surrounding area. In order to understand the surrounding environmental conditions during the interventions or surgical procedures, a simulation of blood flow in cerebral arteries is needed. One of the effective simulation approaches is to use the lattice Boltzmann (LB) method. Due to the computational complexity of the algorithm, the simulation is usually performed on high performance computers. In this paper, efficient hardware architectures of the LB method on a Zynq system‐on‐chip (SoC) are designed and implemented. The proposed architectures have first been simulated in Vivado HLS environment and later implemented on a ZedBoard using the software‐defined SoC (SDSoC) development environment. In addition, a set of evaluations of different hardware architectures of the LB implementation is discussed in this paper. The experimental results show that the proposed implementation is able to accelerate the processing speed by a factor of 52 compared to a dual‐core ARM processor‐based software implementation

    Computational Physiology

    Get PDF
    This open access volume compiles student reports from the 2021 Simula Summer School in Computational Physiology. Interested readers will find herein a number of modern approaches to modeling excitable tissue. This should provide a framework for tools available to model subcellular and tissue-level physiology across scales and scientific questions. In June through August of 2021, Simula held the seventh annual Summer School in Computational Physiology in collaboration with the University of Oslo (UiO) and the University of California, San Diego (UCSD). The course focuses on modeling excitable tissues, with a special interest in cardiac physiology and neuroscience. The majority of the school consists of group research projects conducted by Masters and PhD students from around the world, and advised by scientists at Simula, UiO and UCSD. Each group then produced a report that addreses a specific problem of importance in physiology and presents a succinct summary of the findings. Reports may not necessarily represent new scientific results; rather, they can reproduce or supplement earlier computational studies or experimental findings. Reports from eight of the summer projects are included as separate chapters. The fields represented include cardiac geometry definition (Chapter 1), electrophysiology and pharmacology (Chapters 2–5), fluid mechanics in blood vessels (Chapter 6), cardiac calcium handling and mechanics (Chapter 7), and machine learning in cardiac electrophysiology (Chapter 8)

    Computational Physiology

    Get PDF
    This open access volume compiles student reports from the 2021 Simula Summer School in Computational Physiology. Interested readers will find herein a number of modern approaches to modeling excitable tissue. This should provide a framework for tools available to model subcellular and tissue-level physiology across scales and scientific questions. In June through August of 2021, Simula held the seventh annual Summer School in Computational Physiology in collaboration with the University of Oslo (UiO) and the University of California, San Diego (UCSD). The course focuses on modeling excitable tissues, with a special interest in cardiac physiology and neuroscience. The majority of the school consists of group research projects conducted by Masters and PhD students from around the world, and advised by scientists at Simula, UiO and UCSD. Each group then produced a report that addreses a specific problem of importance in physiology and presents a succinct summary of the findings. Reports may not necessarily represent new scientific results; rather, they can reproduce or supplement earlier computational studies or experimental findings. Reports from eight of the summer projects are included as separate chapters. The fields represented include cardiac geometry definition (Chapter 1), electrophysiology and pharmacology (Chapters 2–5), fluid mechanics in blood vessels (Chapter 6), cardiac calcium handling and mechanics (Chapter 7), and machine learning in cardiac electrophysiology (Chapter 8)

    Atrial Fibrillation and Cognitive Decline: a Computational Hemodynamics Investigation

    Get PDF
    Background: Atrial fibrillation (AF) is a prevalent cardiac disease which has been associated with increased risk of dementia and cognitive decline. We hypothesize that atrial fibrillation leads to regional transient hypoperfusion events in the brain, and that geometric variations in the arterial structure called the Circle of Willis (CoW) play a role in these events. Methods: A computational model was developed to simulate cerebral blood flow in six common variations of the CoW. Risk was assessed based on frequency of beat-wise regional hypoperfusion events during AF, and sensitivity analysis was performed with respect to this model output. Results: A key artery in the CoW, called the A1 segment, was found to play the most important role in cerebral perfusion. Intrinsic heart rate was also found to influence the frequency of hypoperfusion events. Conclusions: Our results suggest that heart rate and CoW geometry play important roles influencing cerebral hemodynamics during AF

    The Scientific Case for Brain Simulators

    Get PDF
    A key element of the European Union’s Human Brain Project (HBP) and other large-scale brain research projects is the simulation of large-scale model networks of neurons. Here, we argue why such simulations will likely be indispensable for bridging the scales between the neuron and system levels in the brain, and why a set of brain simulators based on neuron models at different levels of biological detail should therefore be developed. To allow for systematic refinement of candidate network models by comparison with experiments, the simulations should be multimodal in the sense that they should predict not only action potentials, but also electric, magnetic, and optical signals measured at the population and system levels

    Contributions to the Development of Objective Techniques for Presence Measurement in Virtual Environments by means of Brain Activity Analysis

    Full text link
    En esta tesis, se propone el uso de la técnica de Doppler transcraneal (DTC) para monitorizar la actividad cerebral durante la exposición a entornos virtuales (EV) y así poder analizar los correlatos cerebrales del sentido de presencia. Las hipótesis de partida son las siguientes: 1) DTC se podrá utilizar fácilmente en combinación con sistemas de realidad virtual. 2) Los datos de velocidad de flujo sanguíneo medidos por DTC se podrán utilizar para analizar cambios de actividad cerebral durante la exposición a EV. 3) Habrá diferencias en la velocidad del flujo sanguíneo asociadas a distintos niveles de presencia. 4) Habrá correlación entre el grado de presencia medido por cuestionarios y parámetros de la velocidad de flujo sanguíneo. 5) Cada componente de la experiencia virtual tendrá una influencia en las variaciones de velocidad observadas. Para analizar las hipótesis planteadas, se realizaron cuatro experimentos distintos, en los que se analizó la velocidad del flujo sanguíneo durante: 1) distintas condiciones de navegación, 2) distintas condiciones de inmersión, 3) una tarea de percepción visual y 4) tareas motoras para manejo de un joystick. Durante la tesis, se han propuesto distintas técnicas de procesado de señal basadas en análisis espectral y en la obtención parámetros no lineales de la señal, que no habían sido utilizadas previamente en experimentos psicofisiológicos con DTC. Se ha observado que existe un incremento en la velocidad del flujo sanguíneo durante la exposición a un EV, el cual puede deberse a distintos factores que intervienen en la experiencia: tareas de interacción visuoespacial, tareas de atención, la creación y ejecución de un plan motor, cambios emocionales Los análisis han mostrado que existen correlaciones significativas entre la velocidad media de flujo sanguíneo en las arterias cerebrales medias durante la exposición al EV y respuestas a los cuestionarios de presencia utilizados.Rey Solaz, B. (2010). Contributions to the Development of Objective Techniques for Presence Measurement in Virtual Environments by means of Brain Activity Analysis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8505Palanci
    corecore