79 research outputs found

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network

    Automatic Control and Fault Diagnosis of MEMS Lateral Comb Resonators

    Get PDF
    Recent advancements in microfabrication of Micro Electro Mechanical Systems have made MEMS an important part of many applications such as safety and sensor/control devices. Miniature structure of MEMS makes them very sensitive to the environmental and operating conditions. In addition, fault in the device might change the parameters and result in unwanted behavioral variations. Therefore, imperfect device structure, fault and operating point dependencies suggest for active control of MEMS.;This research is focused on two main areas of control and fault diagnosis of MEMS devices. In the control part, the application of adaptive controllers is introduced for trajectory control of the device under health and fault conditions. Fault in different forms in the structure of the device are modeled and foundry manufactured for experimental verifications. Pull-in voltage effect in the MEMS Lateral Comb Resonators are investigated and controlled by variable structure controllers. Reliability of operation is enhanced by active control of the device under fault conditions.;The second part of this research is focused on the fault diagnosis of the MEMS devices. Fault is introduced and investigated for better understanding of the system behavioral changes. Modeling of the device in different operating conditions suggests for the multiple-model adaptive estimation (MMAE) fault diagnosis technique. Application of Kalman filters in MMAE is investigated and the performance of the fault diagnosis is compared with other techniques such as self-tuning and auto self-tuning techniques. According to the varying parameters of the system, online parameter identification systems are required to monitor the parameter variations and model the system accurately. Self-tuning banks are applied and combined with MMAE to provide accurate fault diagnosis systems. Different parameter identification techniques result in different system performances. In this regard, this research investigates the application of Recursive Least Square with Forgetting Factor. Different techniques for tuning of forgetting factor value are introduced and their results are compared for better performance. The organization of this dissertation is as follows:;Chapter I introduces the structure of the MEMS Lateral Comb Resonator; Chapter II introduces the application of control techniques and displacement feedback approach. Chapter III investigates the control approach and experimental results. In chapter IV, a new controller is introduced and designed for the MEMS trajectory controls. Chapter V is about the fault and different techniques of fault diagnosis in MEMS LCRs. Chapter 6 is the future work suggested through the current results and observations. Each chapter contains a section to summarize the concluding remarks

    Low order multivariable adaptive control

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1996.Includes bibliographical references (p. 145-149).by Rienk Bakker.Ph.D

    Fault Tolerant Flight Control of Unmanned Aerial Vehicles

    Get PDF
    Safety, reliability and acceptable level of performance of dynamic control systems are the major keys in all control systems especially in safety-critical control systems. A controller should be capable of handling noises and uncertainties imposed to the controlled process. A fault-tolerant controller should be able to control a system with guaranteed stability and good or acceptable performance not only in normal operation conditions but also in the presence of partial faults or total failures that can be occurred in the components of the system. When a fault occurs in a system, it suddenly starts to behave in an unanticipated manner. Thereby, a fault-tolerant controller should be designed for being able to handle the fault and guarantee system stability and acceptable performance in the presence of faults/damages. This shows the importance and necessity of Fault-Tolerant Control (FTC) to safety-critical and even nowadays for some new and non-safety-critical systems. During recent years, Unmanned Aerial Vehicles (UAVs) have proved to play a significant role in military and civil applications. The success of UAVs in different missions guarantees the growing number of UAVs to be considerable in future. Reliability of UAVs and their components against faults and failures is one of the most important objectives for safety-critical systems including manned airplanes and UAVs. The reliability importance of UAVs is implied in the acknowledgement of the Office of the Secretary of Defense in the UAV Roadmap 2005-2030 by stating that, ”Improving UA [unmanned aircraft] reliability is the single most immediate and long-reaching need to ensure their success”. This statement gives a wide future scenery of safety, reliability and Fault-Tolerant Flight Control (FTFC) systems of UAVs. The main objective of this thesis is to investigate and compare some aspects of fault tolerant flight control techniques such as performance, robustness and capability of handling the faults and failures during the flight of UAVs. Several control techniques have been developed and tested on two main platforms at Concordia University for fault-tolerant control techniques development, implementation and flight test purposes: quadrotor and fixedwing UAVs. The FTC techniques developed are: Gain-Scheduled Proportional-Integral-Derivative (GS-PID), Control Allocation and Re-allocation (CA/RA), Model Reference Adaptive Control (MRAC), and finally the Linear Parameter Varying (LPV) control as an alternative and theoretically more comprehensive gain scheduling based control technique. The LPV technique is used to control the quadrotor helicopter for fault-free conditions. Also a GS-PID controller is used as a fault-tolerant controller and implemented on a fixedwing UAV in the presence of a stuck rudder failure case

    Certification Considerations for Adaptive Systems

    Get PDF
    Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Relaxing Fundamental Assumptions in Iterative Learning Control

    Full text link
    Iterative learning control (ILC) is perhaps best decribed as an open loop feedforward control technique where the feedforward signal is learned through repetition of a single task. As the name suggests, given a dynamic system operating on a finite time horizon with the same desired trajectory, ILC aims to iteratively construct the inverse image (or its approximation) of the desired trajectory to improve transient tracking. In the literature, ILC is often interpreted as feedback control in the iteration domain due to the fact that learning controllers use information from past trials to drive the tracking error towards zero. However, despite the significant body of literature and powerful features, ILC is yet to reach widespread adoption by the control community, due to several assumptions that restrict its generality when compared to feedback control. In this dissertation, we relax some of these assumptions, mainly the fundamental invariance assumption, and move from the idea of learning through repetition to two dimensional systems, specifically repetitive processes, that appear in the modeling of engineering applications such as additive manufacturing, and sketch out future research directions for increased practicality: We develop an L1 adaptive feedback control based ILC architecture for increased robustness, fast convergence, and high performance under time varying uncertainties and disturbances. Simulation studies of the behavior of this combined L1-ILC scheme under iteration varying uncertainties lead us to the robust stability analysis of iteration varying systems, where we show that these systems are guaranteed to be stable when the ILC update laws are designed to be robust, which can be done using existing methods from the literature. As a next step to the signal space approach adopted in the analysis of iteration varying systems, we shift the focus of our work to repetitive processes, and show that the exponential stability of a nonlinear repetitive system is equivalent to that of its linearization, and consequently uniform stability of the corresponding state space matrix.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133232/1/altin_1.pd

    Optimal fault-tolerant flight control for aircraft with actuation impairments

    Get PDF
    Current trends towards greater complexity and automation are leaving modern technological systems increasingly vulnerable to faults. Without proper action, a minor error may lead to devastating consequences. In flight control, where the controllability and dynamic stability of the aircraft primarily rely on the control surfaces and engine thrust, faults in these effectors result in a higher extent of risk for these aspects. Moreover, the operation of automatic flight control would be suddenly disturbed. To address this problem, different methodologies of designing optimal flight controllers are presented in this thesis. For multiple-input multiple-output (MIMO) systems, the feedback optimal control is a prominent technique that solves a multi-objective cost function, which includes, for instance, tracking requirements and control energy minimisation. The first proposed method is based on a linear quadratic regulator (LQR) control law augmented with a fault-compensation scheme. This fault-tolerant system handles the situation in an adaptive way by solving the optimisation cost function and considering fault information, while assuming an effective fault detection system is available. The developed scheme was tested in a six-degrees-of-freedom nonlinear environment to validate the linear-based controller. Results showed that this fault tolerant control (FTC) strategy managed to handle high magnitudes of the actuator’s loss of effciency faults. Although the rise time of aircraft response became slower, overshoot and settling errors were minimised, and the stability of the aircraft was maintained. Another FTC approach has been developed utilising the features of controller robustness against the system parametric uncertainties, without the need for reconfiguration or adaptation. Two types of control laws were established under this scheme, the H∞ and ”-synthesis controllers. Both were tested in a nonlinear environment for three points in the flight envelope: ascending, cruising, and descending. The H∞ controller maintained the requirements in the intact case; while in fault, it yielded non-robust high-frequency control surface deflections. The ”-synthesis, on the other hand, managed to handle the constraints of the system and accommodate faults reaching 30% loss of effciency in actuation. The final approach is based on the control allocation technique. It considers the tracking requirements and the constraints of the actuators in the design process. To accommodate lock-in-place faults, a new control effort redistribution scheme was proposed using the fuzzy logic technique, assuming faults are provided by a fault detection system. The results of simulation testing on a Boeing 747 multi-effector model showed that the system managed to handle these faults and maintain good tracking and stability performance, with some acceptable degradation in particular fault scenarios. The limitations of the controller to handle a high degree of faults were also presented
    • 

    corecore