2,162 research outputs found

    Latch-based RISC-V core with popcount instruction for CNN acceleration

    Get PDF
    Energy-efficiency is essential for vast majority of mobile and embedded battery-powered systems. Internet-of-Things paradigm combines requirements for high computational capabilities, extreme energy-efficiency and low-cost. Increasing manufacturing process variations pose formidable challenges for deep-submicron integrated circuit designs. The effects of variation are further exacerbated by lowered voltages in energy-efficient designs. Compared to traditional flip-flop-based design, latch-based design offers area, energy-efficiency and variation tolerance benefits at the cost of increased timing behavior complexity. A method for converting flip-flop-based processor core to latch-based core at register-transfer-level is presented in this work. Convolutional neural networks have enabled image recognition in the field of computer vision at unprecedented accuracy. Performance and memory requirements of canonical convolutional neural networks have been out of reach for low-cost IoT devices. In collaboration with Tampere University, a custom popcount instruction was added to the cores for accelerating IoT optimized vehicle classification convolutional neural network. This work compares simulation results from synthesized flip-flop-based and latch-based versions of a SCR1 RISC-V processor core and the effects of custom instruction for CNN acceleration. The latch core achieved roughly 50\% smaller energy per operation than the flip-flop core and 2.1x speedup was observed in the execution of the CNN when using the custom instruction

    INVESTIGATING THE EFFECTS OF SINGLE-EVENT UPSETS IN STATIC AND DYNAMIC REGISTERS

    Get PDF
    Radiation-induced single-event upsets (SEUs) pose a serious threat to the reliability of registers. The existing SEU analyses for static CMOS registers focus on the circuit-level impact and may underestimate the pertinent SEU information provided through node analysis. This thesis proposes SEU node analysis to evaluate the sensitivity of static registers and apply the obtained node information to improve the robustness of the register through selective node hardening (SNH) technique. Unlike previous hardening techniques such as the Triple Modular Redundancy (TMR) and the Dual Interlocked Cell (DICE) latch, the SNH method does not introduce larger area overhead. Moreover, this thesis also explores the impact of SEUs in dynamic flip-flops, which are appealing for the design of high-performance microprocessors. Previous work either uses the approaches for static flip-flops to evaluate SEU effects in dynamic flip-flops or overlook the SEU injected during the precharge phase. In this thesis, possible SEU sensitive nodes in dynamic flip-flops are re-examined and their window of vulnerability (WOV) is extended. Simulation results for SEU analysis in non-hardened dynamic flip-flops reveal that the last 55.3 % of the precharge time and a 100% evaluation time are affected by SEUs
    • …
    corecore