401 research outputs found

    A multiple-goal reinforcement learning method for complex vehicle overtaking maneuvers

    Get PDF
    In this paper, we present a learning method to solve the vehicle overtaking problem, which demands a multitude of abilities from the agent to tackle multiple criteria. To handle this problem, we propose to adopt a multiple-goal reinforcement learning (MGRL) framework as the basis of our solution. By considering seven different goals, either Q-learning (QL) or double-action QL is employed to determine action decisions based on whether the other vehicles interact with the agent for that particular goal. Furthermore, a fusion function is proposed according to the importance of each goal before arriving to an overall but consistent action decision. This offers a powerful approach for dealing with demanding situations such as overtaking, particularly when a number of other vehicles are within the proximity of the agent and are traveling at different and varying speeds. A large number of overtaking cases have been simulated to demonstrate its effectiveness. From the results, it can be concluded that the proposed method is capable of the following: 1) making correct action decisions for overtaking; 2) avoiding collisions with other vehicles; 3) reaching the target at reasonable time; 4) keeping almost steady speed; and 5) maintaining almost steady heading angle. In addition, it should also be noted that the proposed method performs lane keeping well when not overtaking and lane changing effectively when overtaking is in progress. © 2006 IEEE.published_or_final_versio

    Learning Based High-Level Decision Making for Abortable Overtaking in Autonomous Vehicles

    Full text link
    Autonomous vehicles are a growing technology that aims to enhance safety, accessibility, efficiency, and convenience through autonomous maneuvers ranging from lane change to overtaking. Overtaking is one of the most challenging maneuvers for autonomous vehicles, and current techniques for autonomous overtaking are limited to simple situations. This paper studies how to increase safety in autonomous overtaking by allowing the maneuver to be aborted. We propose a decision-making process based on a deep Q-Network to determine if and when the overtaking maneuver needs to be aborted. The proposed algorithm is empirically evaluated in simulation with varying traffic situations, indicating that the proposed method improves safety during overtaking maneuvers. Furthermore, the approach is demonstrated in real-world experiments using the autonomous shuttle iseAuto.Comment: 11 pages, 16 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    An Agent-based Modelling Framework for Driving Policy Learning in Connected and Autonomous Vehicles

    Get PDF
    Due to the complexity of the natural world, a programmer cannot foresee all possible situations, a connected and autonomous vehicle (CAV) will face during its operation, and hence, CAVs will need to learn to make decisions autonomously. Due to the sensing of its surroundings and information exchanged with other vehicles and road infrastructure, a CAV will have access to large amounts of useful data. While different control algorithms have been proposed for CAVs, the benefits brought about by connectedness of autonomous vehicles to other vehicles and to the infrastructure, and its implications on policy learning has not been investigated in literature. This paper investigates a data driven driving policy learning framework through an agent-based modelling approaches. The contributions of the paper are two-fold. A dynamic programming framework is proposed for in-vehicle policy learning with and without connectivity to neighboring vehicles. The simulation results indicate that while a CAV can learn to make autonomous decisions, vehicle-to-vehicle (V2V) communication of information improves this capability. Furthermore, to overcome the limitations of sensing in a CAV, the paper proposes a novel concept for infrastructure-led policy learning and communication with autonomous vehicles. In infrastructure-led policy learning, road-side infrastructure senses and captures successful vehicle maneuvers and learns an optimal policy from those temporal sequences, and when a vehicle approaches the road-side unit, the policy is communicated to the CAV. Deep-imitation learning methodology is proposed to develop such an infrastructure-led policy learning framework

    Multiobjective Reinforcement Learning for Reconfigurable Adaptive Optimal Control of Manufacturing Processes

    Full text link
    In industrial applications of adaptive optimal control often multiple contrary objectives have to be considered. The weights (relative importance) of the objectives are often not known during the design of the control and can change with changing production conditions and requirements. In this work a novel model-free multiobjective reinforcement learning approach for adaptive optimal control of manufacturing processes is proposed. The approach enables sample-efficient learning in sequences of control configurations, given by particular objective weights.Comment: Conference, Preprint, 978-1-5386-5925-0/18/$31.00 \c{opyright} 2018 IEE

    A Two-Stage Real-Time Path Planning: Application to the Overtaking Manuever

    Get PDF
    This paper proposes a two-stage local path planning approach to deal with all kinds of scenarios (i.e. intersections, turns, roundabouts). The first stage carries out an off-line optimization, considering vehicle kinematics and road constraints. The second stage includes all dynamic obstacles in the scene, generating a continuous path in real-time. Human-like driving style is provided by evaluating the sharpness of the road bends and the available space among them, optimizing the drivable area. The proposed approach is validated on overtaking scenarios where real-time path planning generation plays a key role. Simulation and real results on an experimental automated platform provide encouraging results, generating real-time collision-free paths while maintaining the defined smoothness criteria.INRIA and VEDECOM Institutes under the Ph.D. Grant; 10.13039/501100011688-Electronic Components and Systems for European Leadership (ECSEL) Project AutoDriv
    corecore