13,917 research outputs found

    Designing fuzzy rule based classifier using self-organizing feature map for analysis of multispectral satellite images

    Full text link
    We propose a novel scheme for designing fuzzy rule based classifier. An SOFM based method is used for generating a set of prototypes which is used to generate a set of fuzzy rules. Each rule represents a region in the feature space that we call the context of the rule. The rules are tuned with respect to their context. We justified that the reasoning scheme may be different in different context leading to context sensitive inferencing. To realize context sensitive inferencing we used a softmin operator with a tunable parameter. The proposed scheme is tested on several multispectral satellite image data sets and the performance is found to be much better than the results reported in the literature.Comment: 23 pages, 7 figure

    Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory

    Full text link
    Land cover classification using multispectral satellite image is a very challenging task with numerous practical applications. We propose a multi-stage classifier that involves fuzzy rule extraction from the training data and then generation of a possibilistic label vector for each pixel using the fuzzy rule base. To exploit the spatial correlation of land cover types we propose four different information aggregation methods which use the possibilistic class label of a pixel and those of its eight spatial neighbors for making the final classification decision. Three of the aggregation methods use Dempster-Shafer theory of evidence while the remaining one is modeled after the fuzzy k-NN rule. The proposed methods are tested with two benchmark seven channel satellite images and the results are found to be quite satisfactory. They are also compared with a Markov random field (MRF) model-based contextual classification method and found to perform consistently better.Comment: 14 pages, 2 figure

    Artificial neural networks in geospatial analysis

    Full text link
    Artificial neural networks are computational models widely used in geospatial analysis for data classification, change detection, clustering, function approximation, and forecasting or prediction. There are many types of neural networks based on learning paradigm and network architectures. Their use is expected to grow with increasing availability of massive data from remote sensing and mobile platforms

    ART Neural Networks for Remote Sensing Image Analysis

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems, including automatic mapping from remote sensing satellite measurements, parts design retrieval at the Boeing Company, medical database prediction, and robot vision. This paper features a self-contained introduction to ART and ARTMAP dynamics. An application of these networks to image processing is illustrated by means of a remote sensing example. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, which allows the network to encode important rare cases but which may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. Recently developed ART models (dART and dARTMAP) retain stable coding, recognition, and prediction, but allow arbitrarily distributed category representation during learning as well as performance

    ARTMAP-FTR: A Neural Network For Fusion Target Recognition, With Application To Sonar Classification

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include automatic mapping from satellite remote sensing data, machine tool monitoring, medical prediction, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, Gaussian ARTMAP, and distributed ARTMAP. A new ARTMAP variant, called ARTMAP-FTR (fusion target recognition), has been developed for the problem of multi-ping sonar target classification. The development data set, which lists sonar returns from underwater objects, was provided by the Naval Surface Warfare Center (NSWC) Coastal Systems Station (CSS), Dahlgren Division. The ARTMAP-FTR network has proven to be an effective tool for classifying objects from sonar returns. The system also provides a procedure for solving more general sensor fusion problems.Office of Naval Research (N00014-95-I-0409, N00014-95-I-0657

    ARTMAP-FTR: A Neural Network for Object Recognition Through Sonar on a Mobile Robot

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include automatic mapping from satellite remote sensing data, machine tool monitoring, medical prediction, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, Gaussian ARTMAP, and distributed ARTMAP. A new ARTMAP variant, called ARTMAP-FTR (fusion target recognition), has been developed for the problem of multi-ping sonar target classification. The development data set, which lists sonar returns from underwater objects, was provided by the Naval Surface Warfare Center (NSWC) Coastal Systems Station (CSS), Dahlgren Division. The ARTMAP-FTR network has proven to be an effective tool for classifying objects from sonar returns. The system also provides a procedure for solving more general sensor fusion problems.Office of Naval Research (N00014-95-I-0409, N00014-95-I-0657

    ART and ARTMAP Neural Networks for Applications: Self-Organizing Learning, Recognition, and Prediction

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems. Applications include parts design retrieval at the Boeing Company, automatic mapping from remote sensing satellite measurements, medical database prediction, and robot vision. This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete algorithm for applications. Computational properties of these networks are illustrated by means of remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, that allows the network to encode important rare cases but that may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. In medical database prediction problems, which often feature inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP performance with distributed prediction, category instance counting, and a new search algorithm. A recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition, and prediction, but allows arbitrarily distributed category representation during learning as well as performance.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    Art Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data

    Full text link
    A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural network, is developed. System capabilities are tested on a challenging remote sensing classification problem, using spectral and terrain features for vegetation classification in the Cleveland National Forest. After training at the pixel level, system performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest Neighbor algorithms. ARTMAP dynamics are fast, stable, and scalable, overcoming common limitations of back propagation, which did not give satisfactory performance. Best results are obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. A prototype remote sensing example introduces each aspect of data processing and fuzzy ARTMAP classification. The example shows how the network automatically constructs a minimal number of recognition categories to meet accuracy criteria. A voting strategy improves prediction and assigns confidence estimates by training the system several times on different orderings of an input set.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-l-0409, N00014-95-0657
    • …
    corecore