37,348 research outputs found

    Multiple security domain nondeducibility in cyber-physical systems

    Get PDF
    Cyber-physical Systems (CPS) present special problems for security. This dissertation examines the cyber security problem, the physical security problem, the security problems presented when cyber systems and physical systems are intertwined, and problems presented by the fact that CPS leak information simply by being observed. The issues presented by applying traditional cyber security to CPS are explored and some of the shortcomings of these models are noted. Specific models of a drive-by-wire\u27\u27 automobile connected to a road side assistance network, a Stuxnet type\u27\u27 attack, the smart grid, and others are presented in detail. The lack of good tools for CPS security is addressed in part by the introduction of a new model, Multiple Security Domains Nondeducibility over an Event System, or MSDND(ES). The drive-by-wire automobile is studied to show how MSDND(ES) is applied to a system that traditional security models do not describe well. The issue of human trust in inherently vulnerable CPS with embedded cyber monitors, is also explored. A Stuxnet type attack on a CPS is examined using both MSDND(ES) and Belief, Information acquisition, and Trust (BIT) logic to provide a clear and precise method to discuss issues of trust and belief in monitors and electronic reports. To show these techniques, the electrical smart grid as envisioned by the Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM) project is also modeled. Areas that may lead to the development of additional tools are presented as possible future work to address the fact: CPS are different and require different models and tools to understand. --Abstract, page iii

    Exploring the impact of different cost heuristics in the allocation of safety integrity levels

    Get PDF
    Contemporary safety standards prescribe processes in which system safety requirements, captured early and expressed in the form of Safety Integrity Levels (SILs), are iteratively allocated to architectural elements. Different SILs reflect different requirements stringencies and consequently different development costs. Therefore, the allocation of safety requirements is not a simple problem of applying an allocation "algebra" as treated by most standards; it is a complex optimisation problem, one of finding a strategy that minimises cost whilst meeting safety requirements. One difficulty is the lack of a commonly agreed heuristic for how costs increase between SILs. In this paper, we define this important problem; then we take the example of an automotive system and using an automated approach show that different cost heuristics lead to different optimal SIL allocations. Without automation it would have been impossible to explore the vast space of allocations and to discuss the subtleties involved in this problem

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Universal blind quantum computation

    Get PDF
    We present a protocol which allows a client to have a server carry out a quantum computation for her such that the client's inputs, outputs and computation remain perfectly private, and where she does not require any quantum computational power or memory. The client only needs to be able to prepare single qubits randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. Our protocol is interactive: after the initial preparation of quantum states, the client and server use two-way classical communication which enables the client to drive the computation, giving single-qubit measurement instructions to the server, depending on previous measurement outcomes. Our protocol works for inputs and outputs that are either classical or quantum. We give an authentication protocol that allows the client to detect an interfering server; our scheme can also be made fault-tolerant. We also generalize our result to the setting of a purely classical client who communicates classically with two non-communicating entangled servers, in order to perform a blind quantum computation. By incorporating the authentication protocol, we show that any problem in BQP has an entangled two-prover interactive proof with a purely classical verifier. Our protocol is the first universal scheme which detects a cheating server, as well as the first protocol which does not require any quantum computation whatsoever on the client's side. The novelty of our approach is in using the unique features of measurement-based quantum computing which allows us to clearly distinguish between the quantum and classical aspects of a quantum computation.Comment: 20 pages, 7 figures. This version contains detailed proofs of authentication and fault tolerance. It also contains protocols for quantum inputs and outputs and appendices not available in the published versio
    corecore