3,234 research outputs found

    Circuit-Variant Moving Target Defense for Side-Channel Attacks on Reconfigurable Hardware

    Get PDF
    With the emergence of side-channel analysis (SCA) attacks, bits of a secret key may be derived by correlating key values with physical properties of cryptographic process execution. Power and Electromagnetic (EM) analysis attacks are based on the principle that current flow within a cryptographic device is key-dependent and therefore, the resulting power consumption and EM emanations during encryption and/or decryption can be correlated to secret key values. These side-channel attacks require several measurements of the target process in order to amplify the signal of interest, filter out noise, and derive the secret key through statistical analysis methods. Differential power and EM analysis attacks rely on correlating actual side-channel measurements to hypothetical models. This research proposes increasing resistance to differential power and EM analysis attacks through structural and spatial randomization of an implementation. By introducing randomly located circuit variants of encryption components, the proposed moving target defense aims to disrupt side-channel collection and correlation needed to successfully implement an attac

    Fine-grained timing using genetic programming

    Get PDF
    In previous work, we have demonstrated that it is possible to use Genetic Programming to minimise the resource consumption of software, such as its power consumption or execution time. In this paper, we investigate the extent to which Genetic Programming can be used to gain fine-grained control over software timing. We introduce the ideas behind our work, and carry out experimentation to find that Genetic Programming is indeed able to produce software with unusual and desirable timing properties, where it is not obvious how a manual approach could replicate such results. In general, we discover that Genetic Programming is most effective in controlling statistical properties of software rather than precise control over its timing for individual inputs. This control may find useful application in cryptography and embedded systems

    Dynamic Polymorphic Reconfiguration to Effectively “CLOAK” a Circuit’s Function

    Get PDF
    Today\u27s society has become more dependent on the integrity and protection of digital information used in daily transactions resulting in an ever increasing need for information security. Additionally, the need for faster and more secure cryptographic algorithms to provide this information security has become paramount. Hardware implementations of cryptographic algorithms provide the necessary increase in throughput, but at a cost of leaking critical information. Side Channel Analysis (SCA) attacks allow an attacker to exploit the regular and predictable power signatures leaked by cryptographic functions used in algorithms such as RSA. In this research the focus on a means to counteract this vulnerability by creating a Critically Low Observable Anti-Tamper Keeping Circuit (CLOAK) capable of continuously changing the way it functions in both power and timing. This research has determined that a polymorphic circuit design capable of varying circuit power consumption and timing can protect a cryptographic device from an Electromagnetic Analysis (EMA) attacks. In essence, we are effectively CLOAKing the circuit functions from an attacker

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Detecting Fault Injection Attacks with Runtime Verification

    Get PDF
    International audienceFault injections are increasingly used to attack/test secure applications. In this paper, we define formal models of runtime monitors that can detect fault injections that result in test inversion attacks and arbitrary jumps in the control flow. Runtime verification monitors offer several advantages. The code implementing a monitor is small compared to the entire application code. Monitors have a formal semantics; and we prove that they effectively detect attacks. Each monitor is a module dedicated to detecting an attack and can be deployed as needed to secure the application. A monitor can run separately from the application or it can be weaved inside the application. Our monitors have been validated by detecting simulated attacks on a program that verifies a user PIN

    Cryptographically Secure Information Flow Control on Key-Value Stores

    Full text link
    We present Clio, an information flow control (IFC) system that transparently incorporates cryptography to enforce confidentiality and integrity policies on untrusted storage. Clio insulates developers from explicitly manipulating keys and cryptographic primitives by leveraging the policy language of the IFC system to automatically use the appropriate keys and correct cryptographic operations. We prove that Clio is secure with a novel proof technique that is based on a proof style from cryptography together with standard programming languages results. We present a prototype Clio implementation and a case study that demonstrates Clio's practicality.Comment: Full version of conference paper appearing in CCS 201
    corecore