235 research outputs found

    Stochastic Block Models are a Discrete Surface Tension

    Full text link
    Networks, which represent agents and interactions between them, arise in myriad applications throughout the sciences, engineering, and even the humanities. To understand large-scale structure in a network, a common task is to cluster a network's nodes into sets called "communities", such that there are dense connections within communities but sparse connections between them. A popular and statistically principled method to perform such clustering is to use a family of generative models known as stochastic block models (SBMs). In this paper, we show that maximum likelihood estimation in an SBM is a network analog of a well-known continuum surface-tension problem that arises from an application in metallurgy. To illustrate the utility of this relationship, we implement network analogs of three surface-tension algorithms, with which we successfully recover planted community structure in synthetic networks and which yield fascinating insights on empirical networks that we construct from hyperspectral videos.Comment: to appear in Journal of Nonlinear Scienc

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Multitemporal Very High Resolution from Space: Outcome of the 2016 IEEE GRSS Data Fusion Contest

    Get PDF
    In this paper, the scientific outcomes of the 2016 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society are discussed. The 2016 Contest was an open topic competition based on a multitemporal and multimodal dataset, which included a temporal pair of very high resolution panchromatic and multispectral Deimos-2 images and a video captured by the Iris camera on-board the International Space Station. The problems addressed and the techniques proposed by the participants to the Contest spanned across a rather broad range of topics, and mixed ideas and methodologies from the remote sensing, video processing, and computer vision. In particular, the winning team developed a deep learning method to jointly address spatial scene labeling and temporal activity modeling using the available image and video data. The second place team proposed a random field model to simultaneously perform coregistration of multitemporal data, semantic segmentation, and change detection. The methodological key ideas of both these approaches and the main results of the corresponding experimental validation are discussed in this paper

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Preliminary process in blast cell morphology identification based on image segmentation methods

    Get PDF
    The diagnosis of blood disorders in developing countries usually uses the diagnostic procedure Complete Blood Count (CBC). This is due to the limitations of existing health facilities so that examinations use standard microscopes as required in CBC examinations. However, the CBC process still poses a problem, namely that the procedure for manually counting blood cells with a microscope requires a lot of energy and time, and is expensive. This paper will discuss alternative uses of image processing technology in blast cell identification by using microscope images. In this paper, we will discuss in detail the morphological measurements which include the diameter, circumference and area of blast cell cells based on watershed segmentation methods and active contour. As a basis for further development, we compare the performance between the uses of both methods. The results show that the active contour method has an error percentage of 5.15% while the watershed method has an error percentage of 8.25%

    Structural annotation of em images by graph cut

    Full text link
    • …
    corecore