883 research outputs found

    Optimising water quality outcomes for complex water resource systems and water grids

    Get PDF
    As the world progresses, water resources are likely to be subjected to much greater pressures than in the past. Even though the principal water problem revolves around inadequate and uncertain water supplies, water quality management plays an equally important role. Availability of good quality water is paramount to sustainability of human population as well as the environment. Achieving water quality and quantity objectives can be conflicting and becomes more complicated with challenges like, climate change, growing populations and changed land uses. Managing adequate water quality in a reservoir gets complicated by multiple inflows with different water quality levels often resulting in poor water quality. Hence, it is fundamental to approach this issue in a more systematic, comprehensive, and coordinated fashion. Most previous studies related to water resources management focused on water quantity and considered water quality separately. However, this research study focused on considering water quantity and quality objectives simultaneously in a single model to explore and understand the relationship between them in a reservoir system. A case study area was identified in Western Victoria, Australia with water quantity and quality challenges. Taylors Lake of Grampians System in Victoria, Australia receives water from multiple sources of differing quality and quantity and has the abovesaid problems. A combined simulation and optimisation approach was adopted to carry out the analysis. A multi-objective optimisation approach was applied to achieve optimal water availability and quality in the storage. The multi-objective optimisation model included three objective functions which were: water volume and two water quality parameters: salinity and turbidity. Results showed competing nature of water quantity and quality objectives and established the trade-offs. It further showed that it was possible to generate a range of optimal solutions to effectively manage those trade-offs. The trade-off analysis explored and informed that selective harvesting of inflows is effective to improve water quality in storage. However, with strict water quality restriction there is a considerable loss in water volume. The robustness of the optimisation approach used in this study was confirmed through sensitivity and uncertainty analysis. The research work also incorporated various spatio-temporal scenario analyses to systematically articulate long-term and short-term operational planning strategies. Operational decisions around possible harvesting regimes while achieving optimal water quantity and quality and meeting all water demands were established. The climate change analysis revealed that optimal management of water quantity and quality in storage became extremely challenging under future climate projections. The high reduction in storage volume in the future will lead to several challenges such as water supply shortfall and inability to undertake selective harvesting due to reduced water quality levels. In this context, selective harvesting of inflows based on water quality will no longer be an option to manage water quantity and quality optimally in storage. Some significant conclusions of this research work included the establishment of trade-offs between water quality and quantity objectives particular to this configuration of water supply system. The work demonstrated that selective harvesting of inflows will improve the stored water quality, and this finding along with the approach used is a significant contribution to decision makers working within the water sector. The simulation-optimisation approach is very effective in providing a range of optimal solutions, which can be used to make more informed decisions around achieving optimal water quality and quantity in storage. It was further demonstrated that there are range of planning periods, both long-term (>10 years) and short-term (<1 year), all of which offer distinct advantages and provides useful insights, making this an additional key contribution of the work. Importantly, climate change was also considered where it was found that diminishing water resources, particularly to this geographic location, makes it increasingly difficult to optimise both quality and quantity in storage providing further useful insights from this work.Doctor of Philosoph

    An application of improved salp swarm algorithm for optimal power flow solution considering stochastic solar power generation

    Get PDF
    This paper describes the use of an improved version of the Salp Swarm Algorithm, known as iSSA, to address Optimal Power Flow (OPF) issues in power system management. The iSSA is applied to OPF problems involving stochastic solar power generation, with the goal of optimizing control variables such as real power generation, voltage magnitude at generation buses, transformer tap settings, and reactive power compensation. The optimization aims to achieve three objectives: minimizing power loss, minimizing cost, and minimizing combined cost and emissions from power generation. The iSSA's performance was tested on a modified IEEE 30-bus system and compared to other recent algorithms, including SSA. The simulation results show that the iSSA outperformed all compared algorithms for all objective functions that have been derived in this study

    Structural optimization in steel structures, algorithms and applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Evaluation and optimisation of traction system for hybrid railway vehicles

    Get PDF
    Over the past decade, energy and environmental sustainability in urban rail transport have become increasingly important. Hybrid transportation systems present a multifaceted challenge, encompassing aspects such as hydrogen production, refuelling station infrastructure, propulsion system topology, power source sizing, and control. The evaluation and optimisation of these aspects are critical for the adaptation and commercialisation of hybrid railway vehicles. While there has been significant progress in the development of hybrid railway vehicles, further improvements in propulsion system design are necessary. This thesis explores strategies to achieve this ambitious goal by substituting diesel trains with hybrid trains. However, limited research has assessed the operational performance of replacing diesel trains with hybrid trains on the same tracks. This thesis develops various optimisation techniques for evaluating and refining the hybrid traction system to address this gap. In this research's first phase, the author developed a novel Hybrid Train Simulator designed to analyse driving performance and energy flow among multiple power sources, such as internal combustion engines, electrification, fuel cells, and batteries. The simulator incorporates a novel Automatic Smart Switching Control technique, which scales power among multiple power sources based on the route gradient for hybrid trains. This smart switching approach enhances battery and fuel cell life and reduces maintenance costs by employing it as needed, thereby eliminating the forced charging and discharging of excessively high currents. Simulation results demonstrate a 6% reduction in energy consumption for hybrid trains equipped with smart switching compared to those without it. In the second phase of this research, the author presents a novel technique to solve the optimisation problem of hybrid railway vehicle traction systems by utilising evolutionary and numerical optimisation techniques. The optimisation method employs a nonlinear programming solver, interpreting the problem via a non-convex function combined with an efficient "Mayfly algorithm." The developed hybrid optimisation algorithm minimises traction energy while using limited power to prevent unnecessary load on power sources, ensuring their prolonged life. The algorithm takes into account linear and non-linear variables, such as velocity, acceleration, traction forces, distance, time, power, and energy, to address the hybrid railway vehicle optimisation problem, focusing on the energy-time trade-off. The optimised trajectories exhibit an average reduction of 16.85% in total energy consumption, illustrating the algorithm's effectiveness across diverse routes and conditions, with an average increase in journey times of only 0.40% and a 15.18% reduction in traction power. The algorithm achieves a well-balanced energy-time trade-off, prioritising energy efficiency without significantly impacting journey duration, a critical aspect of sustainable transportation systems. In the third phase of this thesis, the author introduced artificial neural network models to solve the optimisation problem for hybrid railway vehicles. Based on time and power-based architecture, two ANN models are presented, capable of predicting optimal hybrid train trajectories. These models tackle the challenge of analysing large datasets of hybrid railway vehicles. Both models demonstrate the potential for efficiently predicting hybrid train target parameters. The results indicate that both ANN models effectively predict a hybrid train's critical parameters and trajectory, with mean errors ranging from 0.19% to 0.21%. However, the cascade-forward neural network topology in the time-based architecture outperforms the feed-forward neural network topology in terms of mean squared error and maximum error in the power-based architecture. Specifically, the cascade-forward neural network topology within the time-based structure exhibits a slightly lower MSE and maximum error than its power-based counterpart. Moreover, the study reveals the average percentage difference between the benchmark and FFNN/CNFN trajectories, highlighting that the time-based architecture exhibits lower differences (0.18% and 0.85%) compared to the power-based architecture (0.46% and 0.92%)

    Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and Research Opportunities

    Full text link
    Evolutionary algorithms (EA), a class of stochastic search methods based on the principles of natural evolution, have received widespread acclaim for their exceptional performance in various real-world optimization problems. While researchers worldwide have proposed a wide variety of EAs, certain limitations remain, such as slow convergence speed and poor generalization capabilities. Consequently, numerous scholars actively explore improvements to algorithmic structures, operators, search patterns, etc., to enhance their optimization performance. Reinforcement learning (RL) integrated as a component in the EA framework has demonstrated superior performance in recent years. This paper presents a comprehensive survey on integrating reinforcement learning into the evolutionary algorithm, referred to as reinforcement learning-assisted evolutionary algorithm (RL-EA). We begin with the conceptual outlines of reinforcement learning and the evolutionary algorithm. We then provide a taxonomy of RL-EA. Subsequently, we discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature. The RL-assisted procedure is divided according to the implemented functions including solution generation, learnable objective function, algorithm/operator/sub-population selection, parameter adaptation, and other strategies. Finally, we analyze potential directions for future research. This survey serves as a rich resource for researchers interested in RL-EA as it overviews the current state-of-the-art and highlights the associated challenges. By leveraging this survey, readers can swiftly gain insights into RL-EA to develop efficient algorithms, thereby fostering further advancements in this emerging field.Comment: 26 pages, 16 figure

    Machine Learning and Deep Learning applications for the protection of nuclear fusion devices

    Get PDF
    This Thesis addresses the use of artificial intelligence methods for the protection of nuclear fusion devices with reference to the Joint European Torus (JET) Tokamak and the Wendenstein 7-X (W7-X) Stellarator. JET is currently the world's largest operational Tokamak and the only one operated with the Deuterium-Tritium fuel, while W7-X is the world's largest and most advanced Stellarator. For the work on JET, research focused on the prediction of “disruptions”, and sudden terminations of plasma confinement. For the development and testing of machine learning classifiers, a total of 198 disrupted discharges and 219 regularly terminated discharges from JET. Convolutional Neural Networks (CNNs) were proposed to extract the spatiotemporal characteristics from plasma temperature, density and radiation profiles. Since the CNN is a supervised algorithm, it is necessary to explicitly assign a label to the time windows of the dataset during training. All segments belonging to regularly terminated discharges were labelled as 'stable'. For each disrupted discharge, the labelling of 'unstable' was performed by automatically identifying the pre-disruption phase using an algorithm developed during the PhD. The CNN performance has been evaluated using disrupted and regularly terminated discharges from a decade of JET experimental campaigns, from 2011 to 2020, showing the robustness of the algorithm. Concerning W7-X, the research involved the real-time measurement of heat fluxes on plasma-facing components. THEODOR is a code currently used at W7-X for computing heat fluxes offline. However, for heat load control, fast heat flux estimation in real-time is required. Part of the PhD work was dedicated to refactoring and optimizing the THEODOR code, with the aim of speeding up calculation times and making it compatible with real-time use. In addition, a Physics Informed Neural Network (PINN) model was proposed to bring thermal flow computation to GPUs for real-time implementation

    Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling

    Get PDF
    In the last decade, the Industrial Revolution 4.0 brought flexible supply chains and flexible design projects to the forefront. Nevertheless, the recent pandemic, the accompanying economic problems, and the resulting supply problems have further increased the role of logistics and supply chains. Therefore, planning and scheduling procedures that can respond flexibly to changed circumstances have become more valuable both in logistics and projects. There are already several competing criteria of project and logistic process planning and scheduling that need to be reconciled. At the same time, the COVID-19 pandemic has shown that even more emphasis needs to be placed on taking potential risks into account. Flexibility and resilience are emphasized in all decision-making processes, including the scheduling of logistic processes, activities, and projects

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms
    • …
    corecore