3,902 research outputs found

    Updating, Upgrading, Refining, Calibration and Implementation of Trade-Off Analysis Methodology Developed for INDOT

    Get PDF
    As part of the ongoing evolution towards integrated highway asset management, the Indiana Department of Transportation (INDOT), through SPR studies in 2004 and 2010, sponsored research that developed an overall framework for asset management. This was intended to foster decision support for alternative investments across the program areas on the basis of a broad range of performance measures and against the background of the various alternative actions or spending amounts that could be applied to the several different asset types in the different program areas. The 2010 study also developed theoretical constructs for scaling and amalgamating the different performance measures, and for analyzing the different kinds of trade-offs. The research products from the present study include this technical report which shows how theoretical underpinnings of the methodology developed for INDOT in 2010 have been updated, upgraded, and refined. The report also includes a case study that shows how the trade-off analysis framework has been calibrated using available data. Supplemental to the report is Trade-IN Version 1.0, a set of flexible and easy-to-use spreadsheets that implement the tradeoff framework. With this framework and using data at the current time or in the future, INDOT’s asset managers are placed in a better position to quantify and comprehend the relationships between budget levels and system-wide performance, the relationships between different pairs of conflicting or non-conflicting performance measures under a given budget limit, and the consequences, in terms of system-wide performance, of funding shifts across the management systems or program areas

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    Improved sampling of the pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm

    Get PDF
    Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems. We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort

    On the evolutionary optimisation of many conflicting objectives

    Get PDF
    This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by Non-dominated Sorting Genetic Algorithm (NSGA) components, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid of mutation and recombination operator configurations. Performance maps are obtained for the dual aims of proximity to, and distribution across, the optimal trade-off surface. Performance sweet-spots for both variation operators are observed to contract as the number of objectives is increased. Classical settings for recombination are shown to be suitable for small numbers of objectives but correspond to very poor performance for higher numbers of objectives, even when large population sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance and active diversity promotion

    A Recommender System Approach for Very Large-scale Multiobjective Optimization

    Full text link
    We define very large multi-objective optimization problems to be multiobjective optimization problems in which the number of decision variables is greater than 100,000 dimensions. This is an important class of problems as many real-world problems require optimizing hundreds of thousands of variables. Existing evolutionary optimization methods fall short of such requirements when dealing with problems at this very large scale. Inspired by the success of existing recommender systems to handle very large-scale items with limited historical interactions, in this paper we propose a method termed Very large-scale Multiobjective Optimization through Recommender Systems (VMORS). The idea of the proposed method is to transform the defined such very large-scale problems into a problem that can be tackled by a recommender system. In the framework, the solutions are regarded as users, and the different evolution directions are items waiting for the recommendation. We use Thompson sampling to recommend the most suitable items (evolutionary directions) for different users (solutions), in order to locate the optimal solution to a multiobjective optimization problem in a very large search space within acceptable time. We test our proposed method on different problems from 100,000 to 500,000 dimensions, and experimental results show that our method not only shows good performance but also significant improvement over existing methods.Comment: 12 pages, 6 figure

    Variable interaction in multi-objective optimization problems

    Get PDF
    14th International Conference on Parallel Problem Solving from Nature – PPSN XIV, 2016-09-17, 2016-09-21, Edinburgh, UK, pp. 399 - 409This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The final publication is available at link.springer.comVariable interaction is an important aspect of a problem, which reflects its structure, and has implications on the design of efficient optimization algorithms. Although variable interaction has been widely studied in the global optimization community, it has rarely been explored in the multi-objective optimization literature. In this paper, we empirically and analytically study the variable interaction structures of some popular multi-objective benchmark problems. Our study uncovers nontrivial variable interaction structures for the ZDT and DTLZ benchmark problems which were thought to be either separable or non-separable

    MULTIOBJECTIVE AND MULTISCALE OPTIMIZATION OF COMPOSITE MATERIALS BY MEANS OF EVOLUTIONARY COMPUTATIONS

    Get PDF
    The paper deals with the multiobjective and multiscale optimization of heterogeneous structures by means of computational intelligence methods. The aim of the paper is to find optimal properties of composite structures in a macro scale modifying their microstructure. At least two contradictory optimization criteria are considered simultaneously. A numerical homogenization concept with a representative volume element is applied to obtain equivalent macro-scale elastic constants. An in-house multiobjective evolutionary algorithm MOOPTIM is applied to solve the considered optimization tasks. The finite element method is used to solve the boundary-value problem in both scales. A numerical example is attached

    Economic and environmental strategies for process design

    Get PDF
    This paper first addresses the definition of various objectives involved in eco-efficient processes, taking simultaneously into account ecological and economic considerations. The environmental aspect at the preliminary design phase of chemical processes is quantified by using a set of metrics or indicators following the guidelines of sustainability concepts proposed by . The resulting multiobjective problem is solved by a genetic algorithm following an improved variant of the so-called NSGA II algorithm. A key point for evaluating environmental burdens is the use of the package ARIANE™, a decision support tool dedicated to the management of plants utilities (steam, electricity, hot water, etc.) and pollutants (CO2, SO2, NO, etc.), implemented here both to compute the primary energy requirements of the process and to quantify its pollutant emissions. The well-known benchmark process for hydrodealkylation (HDA) of toluene to produce benzene, revisited here in a multiobjective optimization way, is used to illustrate the approach for finding eco-friendly and cost-effective designs. Preliminary biobjective studies are carried out for eliminating redundant environmental objectives. The trade-off between economic and environmental objectives is illustrated through Pareto curves. In order to aid decision making among the various alternatives that can be generated after this step, a synthetic evaluation method, based on the so-called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) (), has been first used. Another simple procedure named FUCA has also been implemented and shown its efficiency vs. TOPSIS. Two scenarios are studied; in the former, the goal is to find the best trade-off between economic and ecological aspects while the latter case aims at defining the best compromise between economic and more strict environmental impact
    corecore