2,603 research outputs found

    A novel multi-objective evolutionary algorithm based on space partitioning

    Get PDF
    To design an e ective multi-objective optimization evolutionary algorithms (MOEA), we need to address the following issues: 1) the sensitivity to the shape of true Pareto front (PF) on decomposition-based MOEAs; 2) the loss of diversity due to paying so much attention to the convergence on domination-based MOEAs; 3) the curse of dimensionality for many-objective optimization problems on grid-based MOEAs. This paper proposes an MOEA based on space partitioning (MOEA-SP) to address the above issues. In MOEA-SP, subspaces, partitioned by a k-dimensional tree (kd-tree), are sorted according to a bi-indicator criterion de ned in this paper. Subspace-oriented and Max-Min selection methods are introduced to increase selection pressure and maintain diversity, respectively. Experimental studies show that MOEA-SP outperforms several compared algorithms on a set of benchmarks

    The Kalai-Smorodinski solution for many-objective Bayesian optimization

    Get PDF
    An ongoing aim of research in multiobjective Bayesian optimization is to extend its applicability to a large number of objectives. While coping with a limited budget of evaluations, recovering the set of optimal compromise solutions generally requires numerous observations and is less interpretable since this set tends to grow larger with the number of objectives. We thus propose to focus on a specific solution originating from game theory, the Kalai-Smorodinsky solution, which possesses attractive properties. In particular, it ensures equal marginal gains over all objectives. We further make it insensitive to a monotonic transformation of the objectives by considering the objectives in the copula space. A novel tailored algorithm is proposed to search for the solution, in the form of a Bayesian optimization algorithm: sequential sampling decisions are made based on acquisition functions that derive from an instrumental Gaussian process prior. Our approach is tested on four problems with respectively four, six, eight, and nine objectives. The method is available in the Rpackage GPGame available on CRAN at https://cran.r-project.org/package=GPGame

    Efficient Computation of Expected Hypervolume Improvement Using Box Decomposition Algorithms

    Full text link
    In the field of multi-objective optimization algorithms, multi-objective Bayesian Global Optimization (MOBGO) is an important branch, in addition to evolutionary multi-objective optimization algorithms (EMOAs). MOBGO utilizes Gaussian Process models learned from previous objective function evaluations to decide the next evaluation site by maximizing or minimizing an infill criterion. A common criterion in MOBGO is the Expected Hypervolume Improvement (EHVI), which shows a good performance on a wide range of problems, with respect to exploration and exploitation. However, so far it has been a challenge to calculate exact EHVI values efficiently. In this paper, an efficient algorithm for the computation of the exact EHVI for a generic case is proposed. This efficient algorithm is based on partitioning the integration volume into a set of axis-parallel slices. Theoretically, the upper bound time complexities are improved from previously O(n2)O (n^2) and O(n3)O(n^3), for two- and three-objective problems respectively, to Θ(nlogn)\Theta(n\log n), which is asymptotically optimal. This article generalizes the scheme in higher dimensional case by utilizing a new hyperbox decomposition technique, which was proposed by D{\"a}chert et al, EJOR, 2017. It also utilizes a generalization of the multilayered integration scheme that scales linearly in the number of hyperboxes of the decomposition. The speed comparison shows that the proposed algorithm in this paper significantly reduces computation time. Finally, this decomposition technique is applied in the calculation of the Probability of Improvement (PoI)

    Simple Problems: The Simplicial Gluing Structure of Pareto Sets and Pareto Fronts

    Full text link
    Quite a few studies on real-world applications of multi-objective optimization reported that their Pareto sets and Pareto fronts form a topological simplex. Such a class of problems was recently named the simple problems, and their Pareto set and Pareto front were observed to have a gluing structure similar to the faces of a simplex. This paper gives a theoretical justification for that observation by proving the gluing structure of the Pareto sets/fronts of subproblems of a simple problem. The simplicity of standard benchmark problems is studied.Comment: 10 pages, accepted at GECCO'17 as a poster paper (2 pages
    corecore