4 research outputs found

    A Multilevel Scheduling MAC Protocol for Underwater Acoustic Sensor Networks(UASN)

    Get PDF
    Underwater acoustic sensor networks (UASNs) have attracted great attention in recent years and utilizes as a part of oceanic applications. This network has to deal with propagation delay, energy constraints and limited bandwidth which are strenuous for designing a Medium Access Control (MAC) protocol for underwater communication. There also exists an idle channel listening and overhearing problem which sets down the energy into starvation in the contention-based MAC protocols. Alternatively, lengthy time slots and time synchronization equated by schedule-based MAC protocols, outcomes the variable transmission delay and degrades the network performances. To iron out these problems, we propose a cluster-based MAC protocol, tagged as Multilevel Scheduling MAC (MLS-MAC) protocol for UASN in the paper. The cluster head is a decision maker for packet transmission and aids to inflate the lifetime of sensor nodes. To reinforce the channel efficiency, the multilevel scheduling in data phase is initiated with two queues depending on the applications fixed by the cluster head. The simulation result shows that the MLS-MAC has increased the network throughput and has decreased energy consumption

    A collision aware priority level medium access control protocol for underwater acoustic sensor networks

    Get PDF
    The Underwater Acoustic Sensor Network (UASN) plays a significant role in many application areas like surveillance, security, commercial and industrial applications. In UASN routing, propagation delay and collision are perennial problems due to data transfers from various sensor nodes to the Sink Node (SN) at the same time. In this paper, we propose a Collision Aware Priority Level mechanism based on Medium Access Control protocol (CAPL-MAC) for transferring data from the Sensor Head (SH) to the SN. In the proposed protocol, we use Parallel Competition Scheme (PCS) for high channel utilization and energy saving of battery. In each Competition Cycle (CC), the data packet produced by each SH in a different time slot can join in CC for data packet transmission in parallel with high channel utilization. In CAPL-MAC, each SH is assigned with a different Priority Level Number (PLN) during every CC. Instead of broadcasting, each SH sends its respective PLN to each SH with the help of the nearest SH to save battery energy. Based on the highest PLN, each SH communicates with SN without collision, and it will also reduce propagation delay as well as improve timing efficiency. Finally, Quality of Service is also improved. We adopt the single-layer approach with the handshaking protocol for communication. We carried out the simulation utilizing Aqua-Sim Network Simulator 2. The simulation results showed that the proposed CAPL-MAC protocol achieved the earlier stated performance rather than by existing protocols such as Competitive Transmission-MAC and Channel Aware Aloh
    corecore