773 research outputs found

    On the Impact of Optimal Modulation and FEC Overhead on Future Optical Networks

    Get PDF
    The potential of optimum selection of modulation and forward error correction (FEC) overhead (OH) in future transparent nonlinear optical mesh networks is studied from an information theory perspective. Different network topologies are studied as well as both ideal soft-decision (SD) and hard-decision (HD) FEC based on demap-and-decode (bit-wise) receivers. When compared to the de-facto QPSK with 7% OH, our results show large gains in network throughput. When compared to SD-FEC, HD-FEC is shown to cause network throughput losses of 12%, 15%, and 20% for a country, continental, and global network topology, respectively. Furthermore, it is shown that most of the theoretically possible gains can be achieved by using one modulation format and only two OHs. This is in contrast to the infinite number of OHs required in the ideal case. The obtained optimal OHs are between 5% and 80%, which highlights the potential advantage of using FEC with high OHs.Comment: Some minor typos were correcte

    Designing adaptive coded modulation for optical networks via achievable information rates

    Get PDF
    Β© 2017 IEEE. Achievable information rates are discussed as a tool to analyse and design optical networks. It is shown that the maximum throughput of the network and its dependency of different network parameters can be predicted with such a tool

    Raman Pumping as an Energy Efficient Solution for NyWDM Flexible-grid Elastic Optical Networks

    Get PDF
    This paper investigates transparent wavelength routed optical networks using three different fiber types NZDSF, SMF and PSCF - and validates the effectiveness of Hybrid Raman/EDFA Fiber Amplification (HFA) with different pumping levels, up to the moderate 60% pumping regime. Nodes operate on the basis of flexible-grid elastic NyWDM transponders able to adapt the modulation format to the quality-of-transmission of the available lightpath, exploiting up to five 12.5 GHz spectral slots. Results consider a 37- node Pan-European network for variable Raman pumping level, span length and average traffic per node. We show that HFA in moderate pumping regime reduces the power consumption and enhances spectral efficiency for all three fiber types with particular evidence in NZDSF. In essence to that, introduction of HFA is also beneficial to avoid blocking for higher traffic loads

    Doctor of Philosophy

    Get PDF
    dissertationRecent breakthroughs in silicon photonics technology are enabling the integration of optical devices into silicon-based semiconductor processes. Photonics technology enables high-speed, high-bandwidth, and high-fidelity communications on the chip-scale-an important development in an increasingly communications-oriented semiconductor world. Significant developments in silicon photonic manufacturing and integration are also enabling investigations into applications beyond that of traditional telecom: sensing, filtering, signal processing, quantum technology-and even optical computing. In effect, we are now seeing a convergence of communications and computation, where the traditional roles of optics and microelectronics are becoming blurred. As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufacturing capabilities expand, design support is necessary to fully exploit the potential of this optics technology. Such design support for moving beyond custom-design to automated synthesis and optimization is not well developed. Scalability requires abstractions, which in turn enables and requires the use of optimization algorithms and design methodology flows. Design automation represents an opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying the foundation for current and future optical applications-thus fully realizing the potential of this technology. This dissertation proposes design automation for integrated optic system design. Using a buildingblock model for optical devices, we provide an EDA-inspired design flow and methodologies for optical design automation. Underlying these flows and methodologies are new supporting techniques in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware system integration. We also provide modeling for optical devices and determine optimization and constraint parameters that guide the automation techniques. Our techniques and methodologies are then applied to the design and optimization of optical circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with discussions on the contributions and limitations of the approaches in the context of optical design automation, and describe the tremendous opportunities for future research in design automation for integrated optics
    • …
    corecore