933 research outputs found

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    Smart Buildings

    Get PDF
    This talk presents an efficient cyberphysical platform for the smart management of smart buildings http://www.deepint.net. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart building is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study at Salamanca - Ecocasa. This platform could enable smart building to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques

    Smart territories

    Get PDF
    The concept of smart cities is relatively new in research. Thanks to the colossal advances in Artificial Intelligence that took place over the last decade we are able to do all that that we once thought impossible; we build cities driven by information and technologies. In this keynote, we are going to look at the success stories of smart city-related projects and analyse the factors that led them to success. The development of interactive, reliable and secure systems, both connectionist and symbolic, is often a time-consuming process in which numerous experts are involved. However, intuitive and automated tools like “Deep Intelligence” developed by DCSc and BISITE, facilitate this process. Furthermore, in this talk we will analyse the importance of complementary technologies such as IoT and Blockchain in the development of intelligent systems, as well as the use of edge platforms or fog computing

    Methodologies for innovation and best practices in Industry 4.0 for SMEs

    Get PDF
    Today, cyber physical systems are transforming the way in which industries operate, we call this Industry 4.0 or the fourth industrial revolution. Industry 4.0 involves the use of technologies such as Cloud Computing, Edge Computing, Internet of Things, Robotics and most of all Big Data. Big Data are the very basis of the Industry 4.0 paradigm, because they can provide crucial information on all the processes that take place within manufacturing (which helps optimize processes and prevent downtime), as well as provide information about the employees (performance, individual needs, safety in the workplace) as well as clients/customers (their needs and wants, trends, opinions) which helps businesses become competitive and expand on the international market. Current processing capabilities thanks to technologies such as Internet of Things, Cloud Computing and Edge Computing, mean that data can be processed much faster and with greater security. The implementation of Artificial Intelligence techniques, such as Machine Learning, can enable technologies, can help machines take certain decisions autonomously, or help humans make decisions much faster. Furthermore, data can be used to feed predictive models which can help businesses and manufacturers anticipate future changes and needs, address problems before they cause tangible harm

    Building Efficient Smart Cities

    Get PDF
    Current technological developments offer promising solutions to the challenges faced by cities such as crowding, pollution, housing, the search for greater comfort, better healthcare, optimized mobility and other urban services that must be adapted to the fast-paced life of the citizens. Cities that deploy technology to optimize their processes and infrastructure fit under the concept of a smart city. An increasing number of cities strive towards becoming smart and some are even already being recognized as such, including Singapore, London and Barcelona. Our society has an ever-greater reliance on technology for its sustenance. This will continue into the future, as technology is rapidly penetrating all facets of human life, from daily activities to the workplace and industries. A myriad of data is generated from all these digitized processes, which can be used to further enhance all smart services, increasing their adaptability, precision and efficiency. However, dealing with large amounts of data coming from different types of sources is a complex process; this impedes many cities from taking full advantage of data, or even worse, a lack of control over the data sources may lead to serious security issues, leaving cities vulnerable to cybercrime. Given that smart city infrastructure is largely digitized, a cyberattack would have fatal consequences on the city’s operation, leading to economic loss, citizen distrust and shut down of essential city services and networks. This is a threat to the efficiency smart cities strive for

    Efficient Digital Management in Smart Cities

    Get PDF
    The concept of smart cities puts the citizen at the center of all processes. It is the citizen who decides what kind of city they live in. Their opinions and attitudes towards technologies and the solutions they would like to see in their cities must be listened to. With Deep Intelligence, cities will be able to create more optimal citizen-centered services as, as the tool can collect data from multiple sources, such as databases and social networks, from which valuable information on citizens’ opinions and attitudes regarding technology, smart city services and urban problems, may be extracted

    IoT and Blockchain for Smart Cities

    Get PDF
    Blockchain is a Distributed Ledger Technology (DLT) that makes it possible to secure any type of transaction. This is because the information stored on the Blockchain is immutable, impeding any type of fraud or modification of the data. It was first created for Bitcoin transactions; however, the research community has realized its potential quickly, and started using it for purposes other than cryptocurrency transactions. Blockchain may even be used to secure and provide reliability to the data being transmitted between computational systems, ensuring their immutability. Given the amount of data produced within a smart city, the use of Blockchain is imperative in smart cities, as it protects them from cyberattacks and fraud. Moreover, the transparency of the information stored on Blockchain means that it helps create a more just and democratic society

    Artificial Intelligence, social changes and impact on the world of education

    Get PDF
    The way in which humans acquire and share knowledge has been under constant evolution throughout times. Since the appearance of the first computers, education has changed dramatically. Now, as disruptive technologies are in full development, new opportunities arise for taking education to levels that have never been seen before. Ever since the coronavirus pandemic, the use of online teaching modalities has become widespread all over the world and the situation has caused the development of robust digital learning solutions an urgent need. At present, primary, secondary, third-level teaching and all sorts of courses may be delivered online, either in real-time or recorded for later viewing. Classes can be complemented with videos, documents or even interactive exercises. However, the institutions that used little or no technology prior to Covid-19 have found this situation overwhelming. The lack of knowledge regarding the digital teaching/learning tools available on the market and/or lack of knowledge regarding their use, means that educational institutions will not be able to take full advantage of the opportunities offered; poor use of technology in online classrooms may hinder the students’ progress

    Last mile delivery

    Get PDF
    Last mile delivery is one of the most complex processes in the whole logistics process. This is because it involves many uncertainties, such as weather conditions, road conditions, traffic, car accidents, delivery vehicle anomalies, choice of route, avoiding parcel damage and delivery errors, and communication with the retailer or the recipient of the parcel; all this makes the successful delivery of parcels at the customers’ doorstep difficult. In addition, today’s consumers have much greater expectations regarding delivery services, they demand to receive their parcels much faster or be able to choose the time and place of delivery. All this increases the cost of last mile delivery, accounting for 40% of overall supply chain costs. E-commerce giants such as Amazon can invest a large number of resources into creating optimal last mile delivery solutions, establish numerous warehouses throughout countries which enable them to store the parcels as close to the end user as possible. However, companies that do not have as many resources may find it difficult to satisfy the delivery expectations of their customers; longer and inflexible waiting times, as well as additional payment for delivery may cause companies to quickly lose competitiveness on the market. This means that companies must turn to technological solutions that are going to help them to improve their last mile delivery effectively but at a reasonably low price. Big Data are the basis of all smart solutions. This is because collecting large amounts of data makes it possible to extract information and make future predictions on the basis of past patterns

    Exploiting the conceptual space in hybrid recommender systems: a semantic-based approach

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, octubre de 200
    • …
    corecore