261 research outputs found

    09121 Abstracts Collection -- Normative Multi-Agent Systems

    Get PDF
    From 15.03. to 20.03.2009, the Dagstuhl Seminar 09121 ``Normative Multi-Agent Systems \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Modeling Social Attitudes on the Web

    Full text link

    A CASE FOR DOMAIN-INDEPENDENT DETERMINISTIC MULTIAGENT

    Get PDF
    The notion of planning using multiple agents has been around since the very beginning of planning itself. It has been approached from various viewpoints especially in the multiagent systems community. Recently, domain-independent multiagent planning has gained more attention also in the automated planning community. In this paper, we shortly present the current state of the art, question some aspects of the research field and discuss the rising challenges

    Coordinated inductive learning using argumentation-based communication

    Get PDF
    This paper focuses on coordinated inductive learning, concerning how agents with inductive learning capabilities can coordinate their learnt hypotheses with other agents. Coordination in this context means that the hypothesis learnt by one agent is consistent with the data known to the other agents. In order to address this problem, we present A-MAIL, an argumentation approach for agents to argue about hypotheses learnt by induction. A-MAIL integrates, in a single framework, the capabilities of learning from experience, communication, hypothesis revision and argumentation. Therefore, the A-MAIL approach is one step further in achieving autonomous agents with learning capabilities which can use, communicate and reason about the knowledge they learn from examples. © 2014, The Author(s).Research partially funded by the projects Next-CBR (TIN2009-13692-C03-01) and Cognitio (TIN2012-38450- C03-03) [both co-funded with FEDER], Agreement Technologies (CONSOLIDER CSD2007-0022), and by the Grants 2009-SGR-1433 and 2009-SGR-1434 of the Generalitat de Catalunya.Peer reviewe

    An approach to description logic with support for propositional attitudes and belief fusion

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-89765-1_8Revised Selected and Invited Papers of ISWC International Workshops, URSW 2005-2007.In the (Semantic) Web, the existence or producibility of certain, consensually agreed or authoritative knowledge cannot be assumed, and criteria to judge the trustability and reputation of knowledge sources may not be given. These issues give rise to formalizations of web information which factor in heterogeneous and possibly inconsistent assertions and intentions, and make such heterogeneity explicit and manageable for reasoning mechanisms. Such approaches can provide valuable metaknowledge in contemporary application fields, like open or distributed ontologies, social software, ranking and recommender systems, and domains with a high amount of controversies, such as politics and culture. As an approach to this, we introduce a lean formalism for the Semantic Web which allows for the explicit representation of controversial individual and group opinions and goals by means of so-called social contexts, and optionally for the probabilistic belief merging of uncertain or conflicting statements. Doing so, our approach generalizes concepts such as provenance annotation and voting in the context of ontologies and other kinds of Semantic Web knowledgeThis work was partially funded by the German National Research Foundation DFG (Br609/13-1, research project “Open Ontologies and Open Knowledge Bases”) and by the Spanish National Plan of R+D, project no. TSI2005-08225-C07-0

    Dynamic ontology refinement

    Get PDF

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    Argumentation-based methods for multi-perspective cooperative planning

    Get PDF
    Through cooperation, agents can transcend their individual capabilities and achieve goals that would be unattainable otherwise. Existing multiagent planning work considers each agent’s action capabilities, but does not account for distributed knowledge and the incompatible views agents may have of the planning domain. These divergent views can be a result of faulty sensors, local and incomplete knowledge, and outdated information, or simply because each agent has conducted different inferences and their beliefs are not aligned. This thesis is concerned with Multi-Perspective Cooperative Planning (MPCP), the problem of synthesising a plan for multiple agents which share a goal but hold different views about the state of the environment and the specification of the actions they can perform to affect it. Reaching agreement on a mutually acceptable plan is important, since cautious autonomous agents will not subscribe to plans that they individually believe to be inappropriate or even potentially hazardous. We specify the MPCP problem by adapting standard set-theoretic planning notation. Based on argumentation theory we define a new notion of plan acceptability, and introduce a novel formalism that combines defeasible logic programming and situation calculus that enables the succinct axiomatisation of contradictory planning theories and allows deductive argumentation-based inference. Our work bridges research in argumentation, reasoning about action and classical planning. We present practical methods for reasoning and planning with MPCP problems that exploit the inherent structure of planning domains and efficient planning heuristics. Finally, in order to allow distribution of tasks, we introduce a family of argumentation-based dialogue protocols that enable the agents to reach agreement on plans in a decentralised manner. Based on the concrete foundation of deductive argumentation we analytically investigate important properties of our methods illustrating the correctness of the proposed planning mechanisms. We also empirically evaluate the efficiency of our algorithms in benchmark planning domains. Our results illustrate that our methods can synthesise acceptable plans within reasonable time in large-scale domains, while maintaining a level of expressiveness comparable to that of modern automated planning

    Computational Theory of Mind for Human-Agent Coordination

    Get PDF
    In everyday life, people often depend on their theory of mind, i.e., their ability to reason about unobservable mental content of others to understand, explain, and predict their behaviour. Many agent-based models have been designed to develop computational theory of mind and analyze its effectiveness in various tasks and settings. However, most existing models are not generic (e.g., only applied in a given setting), not feasible (e.g., require too much information to be processed), or not human-inspired (e.g., do not capture the behavioral heuristics of humans). This hinders their applicability in many settings. Accordingly, we propose a new computational theory of mind, which captures the human decision heuristics of reasoning by abstracting individual beliefs about others. We specifically study computational affinity and show how it can be used in tandem with theory of mind reasoning when designing agent models for human-agent negotiation. We perform two-agent simulations to analyze the role of affinity in getting to agreements when there is a bound on the time to be spent for negotiating. Our results suggest that modeling affinity can ease the negotiation process by decreasing the number of rounds needed for an agreement as well as yield a higher benefit for agents with theory of mind reasoning.</p
    • 

    corecore