29,598 research outputs found

    Linear Information Coupling Problems

    Get PDF
    Many network information theory problems face the similar difficulty of single letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close to each other. Under this assumption, the K-L divergence is reduced to the squared Euclidean metric in an Euclidean space. Moreover, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will also present the application of this approach to the point-to-point channel and the general broadcast channel, which demonstrates how our technique simplifies information theory problems.Comment: To appear, IEEE International Symposium on Information Theory, July, 201

    The geometry of the Toda equation

    Full text link
    I show that solutions of the SU(infinity) Toda field equation generating a fixed Einstein-Weyl space are governed by a linear equation on the Einstein-Weyl space. From this, obstructions to the existence of Toda solutions generating a given Einstein-Weyl space are found. I also give a classification of Einstein-Weyl spaces arising from the Toda equation in more than one way. This classification coincides with a class of spaces found by Ward and hence clarifies some of their properties. I end by discussing the simplest examples.Comment: AMS-LaTeX 11 pages; minor changes to title, keywords and reference

    Supersymmetric Quantum Mechanics and Super-Lichnerowicz Algebras

    Full text link
    We present supersymmetric, curved space, quantum mechanical models based on deformations of a parabolic subalgebra of osp(2p+2|Q). The dynamics are governed by a spinning particle action whose internal coordinates are Lorentz vectors labeled by the fundamental representation of osp(2p|Q). The states of the theory are tensors or spinor-tensors on the curved background while conserved charges correspond to the various differential geometry operators acting on these. The Hamiltonian generalizes Lichnerowicz's wave/Laplace operator. It is central, and the models are supersymmetric whenever the background is a symmetric space, although there is an osp(2p|Q) superalgebra for any curved background. The lowest purely bosonic example (2p,Q)=(2,0) corresponds to a deformed Jacobi group and describes Lichnerowicz's original algebra of constant curvature, differential geometric operators acting on symmetric tensors. The case (2p,Q)=(0,1) is simply the {\cal N}=1 superparticle whose supercharge amounts to the Dirac operator acting on spinors. The (2p,Q)=(0,2) model is the {\cal N}=2 supersymmetric quantum mechanics corresponding to differential forms. (This latter pair of models are supersymmetric on any Riemannian background.) When Q is odd, the models apply to spinor-tensors. The (2p,Q)=(2,1) model is distinguished by admitting a central Lichnerowicz-Dirac operator when the background is constant curvature. The new supersymmetric models are novel in that the Hamiltonian is not just a square of super charges, but rather a sum of commutators of supercharges and commutators of bosonic charges. These models and superalgebras are a very useful tool for any study involving high rank tensors and spinors on manifolds.Comment: 39 pages, LaTeX, fixed typos, added refs, final version to appear in CM

    The Linear Information Coupling Problems

    Full text link
    Many network information theory problems face the similar difficulty of single-letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close to each other. Under this assumption, the K-L divergence is reduced to the squared Euclidean metric in an Euclidean space. In addition, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will present the application of this approach to the point-to-point channel, general broadcast channel, and the multiple access channel (MAC) with the common source. It can be shown that with this approach, information theory problems, such as the single-letterization, can be reduced to some linear algebra problems. Moreover, we show that for the general broadcast channel, transmitting the common message to receivers can be formulated as the trade-off between linear systems. We also provide an example to visualize this trade-off in a geometric way. Finally, for the MAC with the common source, we observe a coherent combining gain due to the cooperation between transmitters, and this gain can be quantified by applying our technique.Comment: 27 pages, submitted to IEEE Transactions on Information Theor

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Generalized Bregman Divergence and Gradient of Mutual Information for Vector Poisson Channels

    Full text link
    We investigate connections between information-theoretic and estimation-theoretic quantities in vector Poisson channel models. In particular, we generalize the gradient of mutual information with respect to key system parameters from the scalar to the vector Poisson channel model. We also propose, as another contribution, a generalization of the classical Bregman divergence that offers a means to encapsulate under a unifying framework the gradient of mutual information results for scalar and vector Poisson and Gaussian channel models. The so-called generalized Bregman divergence is also shown to exhibit various properties akin to the properties of the classical version. The vector Poisson channel model is drawing considerable attention in view of its application in various domains: as an example, the availability of the gradient of mutual information can be used in conjunction with gradient descent methods to effect compressive-sensing projection designs in emerging X-ray and document classification applications
    • …
    corecore