1,104 research outputs found

    Language Design for Reactive Systems: On Modal Models, Time, and Object Orientation in Lingua Franca and SCCharts

    Get PDF
    Reactive systems play a crucial role in the embedded domain. They continuously interact with their environment, handle concurrent operations, and are commonly expected to provide deterministic behavior to enable application in safety-critical systems. In this context, language design is a key aspect, since carefully tailored language constructs can aid in addressing the challenges faced in this domain, as illustrated by the various concurrency models that prevent the known pitfalls of regular threads. Today, many languages exist in this domain and often provide unique characteristics that make them specifically fit for certain use cases. This thesis evolves around two distinctive languages: the actor-oriented polyglot coordination language Lingua Franca and the synchronous statecharts dialect SCCharts. While they take different approaches in providing reactive modeling capabilities, they share clear similarities in their semantics and complement each other in design principles. This thesis analyzes and compares key design aspects in the context of these two languages. For three particularly relevant concepts, it provides and evaluates lean and seamless language extensions that are carefully aligned with the fundamental principles of the underlying language. Specifically, Lingua Franca is extended toward coordinating modal behavior, while SCCharts receives a timed automaton notation with an efficient execution model using dynamic ticks and an extension toward the object-oriented modeling paradigm

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Development of a SQUID magnetometry system for cryogenic neutron electric dipole moment experiment

    Get PDF
    A measurement of the neutron electric dipole moment (nEDM) could hold the key to understanding why the visible universe is the way it is: why matter should predominate over antimatter. As a charge-parity violating (CPV) quantity, an nEDM could provide an insight into new mechanisms that address this baryon asymmetry. The motivation for an improved sensitivity to an nEDM is to find it to be non-zero at a level consistent with certain beyond the Standard Model theories that predict new sources of CPV, or to establish a new limit that constrains them. CryoEDM is an experiment that sought to better the current limit of dn<2.9×1026e|d_n| < 2.9 \times 10^{-26}\,e\,cm by an order of magnitude. It is designed to measure the nEDM via the Ramsey Method of Separated Oscillatory Fields, in which it is critical that the magnetic field remains stable throughout. A way of accurately tracking the magnetic fields, moreover at a temperature 0.5\sim 0.5\,K, is crucial for CryoEDM, and for future cryogenic projects. This thesis presents work focussing on the development of a 12-SQUID magnetometry system for CryoEDM, that enables the magnetic field to be monitored to a precision of 0.10.1\,pT. A major component of its infrastructure is the superconducting capillary shields, which screen the input lines of the SQUIDs from the pick up of spurious magnetic fields that will perturb a SQUID's measurement. These are shown to have a transverse shielding factor of >1×107> 1 \times 10^{7}, which is a few orders of magnitude greater than the calculated requirement. Efforts to characterise the shielding of the SQUID chips themselves are also discussed. The use of Cryoperm for shields reveals a tension between improved SQUID noise and worse neutron statistics. Investigations show that without it, SQUIDs have an elevated noise when cooled in a substantial magnetic field; with it, magnetostatic simulations suggest that it is detrimental to the polarisation of neutrons in transport. The findings suggest that with proper consideration, it is possible to reach a compromise between the two behaviours. Computational work to develop a simulation of SQUID data is detailed, which is based on the Laplace equation for the magnetic scalar potential. These data are ultimately used in the development of a linear regression technique to determine the volume-averaged magnetic field in the neutron cells. This proves highly effective in determining the fields within the 0.10.1\,pT requirement under certain conditions

    Towards electric bus system: planning, operating and evaluating

    Get PDF
    The green transformation of public transportation is an indispensable way to achieve carbon neutrality. Governments and authorities are vigorously implementing electric bus procurement and charging infrastructure deployment programs. At this primary but urgent stage, how to reasonably plan the procurement of electric buses, how to arrange the operation of the heterogeneous fleet, and how to locate and scale the infrastructure are urgent issues to be solved. For a smooth transition to full electrification, this thesis aims to propose systematic guidance for the fleet and charging facilities, to ensure life-cycle efficiency and energy conservation from the planning to the operational phase.One of the most important issues in the operational phase is the charge scheduling for electric buses, a new issue that is not present in the conventional transit system. How to take into account the charging location and time duration in bus scheduling and not cause additional load peaks to the grid is the first issue being addressed. A charging schedule optimization model is constructed for opportunity charging with battery wear and charging costs as optimization objectives. Besides, the uncertainty in energy consumption poses new challenges to daily operations. This thesis further specifies the daily charging schedules with the consideration of energy consumption uncertainty while safeguarding the punctuality of bus services.In the context of e-mobility systems, battery sizing, charging station deployment, and bus scheduling emerge as crucial factors. Traditionally these elements have been approached and organized separately with battery sizing and charging facility deployment termed planning phase problems and bus scheduling belonging to operational phase issues. However, the integrated optimization of the three problems has advantages in terms of life-cycle costs and emissions. Therefore, a consolidated optimization model is proposed to collaboratively optimize the three problems and a life-cycle costs analysis framework is developed to examine the performance of the system from both economic and environmental aspects. To improve the attractiveness and utilization of electric public transportation resources, two new solutions have been proposed in terms of charging strategy (vehicle-to-vehicle charging) and operational efficiency (mixed-flow transport). Vehicle-to-vehicle charging allows energy to be continuously transmitted along the road, reducing reliance on the accessibility and deployment of charging facilities. Mixed flow transport mode balances the directional travel demands and facilities the parcel delivery while ensuring the punctuality and safety of passenger transport

    Numerical simulation of surfactant flooding with relative permeability estimation using inversion method

    Get PDF
    Surfactant flooding attracts significant interest in the hydrocarbon industry, with a definite promise to improve oil recovery from depleting oil reserves. In this thesis, surfactant flooding is the primary area of focus as it has significant potential for integration with other chemical enhanced oil recovery techniques, including polymer, nanofluid, alkali, and foam. This combined approach has the potential to reduce interfacial tension to ultralow levels, decrease adsorption, and offer other benefits. However, due to the various mechanism, surfactant flooding poses a more complex model for simulators by encountering numerical issues (e.g., the appearance of spurious oscillations, erratic pulses, and numerical instabilities), rendering the methods ineffective. To address these challenges, the analytical modelling technique of surfactant flooding was studied, leading to the development of a novel inversion method in the MATLAB programming environment. Numerical accuracy issues were discovered in 1D models that used typical cell sizes found in well-scale models, leading to pulses in the oil bank and a dip in water saturation, particularly for low levels of adsorption, highlighting the need for more refined models. Based on these findings, we examined the surfactant flooding technique in 2D models to recover viscous oil in short reservoir aspect ratios. Instabilities such as viscous fingering and gravity tongue were observed on the flood fronts, and the magnitude of the viscous fingers was influenced by vertical dispersion, resulting in errors in computed mobility values at the fronts. Interestingly, introducing heterogeneity only minimally affected the spreading of the front and did not significantly impact viscous fingering or numerical artifacts. To optimize the nonlinearity of flow behaviour and degree of mobility control at the fronts, a homogenous model was considered to develop the inversion method. In summary, the developed inversion method accurately estimated the two-phase relative permeability curves, which were validated using fractional flow theory. The precision of the inverted curves was further improved using the optimization algorithm, demonstrating the method's ability to predict outcomes closer to the observed values for 2D models with instabilities. The obtained results are of significant value for core flood analysis, interpretation, matching, and upscaling, providing insights into the potential of surfactant flooding for enhanced oil recovery. Additionally, the use of the developed MATLAB Scripts promotes open innovation and reproducibility, contributing to the benchmarking, analytical, and numerical method development exercises for tutorials aimed at improving the overall understanding of surfactant flooding

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Minimum-dissipation model for large-eddy simulation in OpenFoam -A study on channel flow, periodic hills and flow over cylinder

    Full text link
    The minimum-dissipation model is applied to turbulent channel flows up to Reτ=2000Re_\tau = 2000, flow past a circular cylinder at Re=3900Re=3900, and flow over periodic hills at Re=10595Re=10595. Numerical simulations are performed in OpenFOAM which is based on finite volume methods for discretizing partial differential equations. We use both symmetry-preserving discretizations and standard second-order accurate discretization methods in OpenFOAM on structured meshes. The results are compared to DNS and experimental data. The results of channel flow mainly demonstrate the static QR model performs equally well as the dynamic models while reducing the computational cost. The model constant C=0.024C=0.024 gives the most accurate prediction, and the contribution of the sub-grid model decreases with the increase of the mesh resolution and becomes very small (less than 0.2 molecular viscosity) if the fine meshes are used. Furthermore, the QR model is able to predict the mean and rms velocity accurately up to Reτ=2000Re_\tau = 2000 without a wall damping function. The symmetry-preserving discretization outperforms the standard OpenFOAM discretization at Reτ=1000Re_\tau=1000. The results for the flow over a cylinder show that mean velocity, drag coefficient, and lift coefficient are in good agreement with the experimental data. The symmetry-preserving scheme with the QR model predicts the best results. The various comparisons carried out for flows over periodic hills demonstrate the need to use the symmetry-preserving discretization or central difference schemes in OpenFOAM in combination with the minimum dissipation model. The model constant of C=0.024C=0.024 is again the best one

    Probabilistic Inference for Model Based Control

    Get PDF
    Robotic systems are essential for enhancing productivity, automation, and performing hazardous tasks. Addressing the unpredictability of physical systems, this thesis advances robotic planning and control under uncertainty, introducing learning-based methods for managing uncertain parameters and adapting to changing environments in real-time. Our first contribution is a framework using Bayesian statistics for likelihood-free inference of model parameters. This allows employing complex simulators for designing efficient, robust controllers. The method, integrating the unscented transform with a variant of information theoretical model predictive control, shows better performance in trajectory evaluation compared to Monte Carlo sampling, easing the computational load in various control and robotics tasks. Next, we reframe robotic planning and control as a Bayesian inference problem, focusing on the posterior distribution of actions and model parameters. An implicit variational inference algorithm, performing Stein Variational Gradient Descent, estimates distributions over model parameters and control inputs in real-time. This Bayesian approach effectively handles complex multi-modal posterior distributions, vital for dynamic and realistic robot navigation. Finally, we tackle diversity in high-dimensional spaces. Our approach mitigates underestimation of uncertainty in posterior distributions, which leads to locally optimal solutions. Using the theory of rough paths, we develop an algorithm for parallel trajectory optimisation, enhancing solution diversity and avoiding mode collapse. This method extends our variational inference approach for trajectory estimation, employing diversity-enhancing kernels and leveraging path signature representation of trajectories. Empirical tests, ranging from 2-D navigation to robotic manipulators in cluttered environments, affirm our method's efficiency, outperforming existing alternatives

    A survey of Bayesian Network structure learning

    Get PDF
    corecore