1,489 research outputs found

    A Multi-step Inertial Forward--Backward Splitting Method for Non-convex Optimization

    Full text link
    In this paper, we propose a multi-step inertial Forward--Backward splitting algorithm for minimizing the sum of two non-necessarily convex functions, one of which is proper lower semi-continuous while the other is differentiable with a Lipschitz continuous gradient. We first prove global convergence of the scheme with the help of the Kurdyka-{\L}ojasiewicz property. Then, when the non-smooth part is also partly smooth relative to a smooth submanifold, we establish finite identification of the latter and provide sharp local linear convergence analysis. The proposed method is illustrated on a few problems arising from statistics and machine learning.Comment: This paper is in company with our recent work on Forward--Backward-type splitting methods http://arxiv.org/abs/1503.0370

    A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization

    Get PDF
    Abstract We propose a multi-step inertial Forward-Backward splitting algorithm for minimizing the sum of two non-necessarily convex functions, one of which is proper lower semi-continuous while the other is differentiable with a Lipschitz continuous gradient. We first prove global convergence of the algorithm with the help of the Kurdyka-Łojasiewicz property. Then, when the non-smooth part is also partly smooth relative to a smooth submanifold, we establish finite identification of the latter and provide sharp local linear convergence analysis. The proposed method is illustrated on several problems arising from statistics and machine learning
    corecore