6,120 research outputs found

    A Two-Stage Approach for Routing Multiple Unmanned Aerial Vehicles with Stochastic Fuel Consumption

    Full text link
    The past decade has seen a substantial increase in the use of small unmanned aerial vehicles (UAVs) in both civil and military applications. This article addresses an important aspect of refueling in the context of routing multiple small UAVs to complete a surveillance or data collection mission. Specifically, this article formulates a multiple-UAV routing problem with the refueling constraint of minimizing the overall fuel consumption for all of the vehicles as a two-stage stochastic optimization problem with uncertainty associated with the fuel consumption of each vehicle. The two-stage model allows for the application of sample average approximation (SAA). Although the SAA solution asymptotically converges to the optimal solution for the two-stage model, the SAA run time can be prohibitive for medium- and large-scale test instances. Hence, we develop a tabu-search-based heuristic that exploits the model structure while considering the uncertainty in fuel consumption. Extensive computational experiments corroborate the benefits of the two-stage model compared to a deterministic model and the effectiveness of the heuristic for obtaining high-quality solutions.Comment: 18 page

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    UAV Routing for Enhancing the Performance of a Classifier-in-the-loop

    Full text link
    Some human-machine systems are designed so that machines (robots) gather and deliver data to remotely located operators (humans) through an interface in order to aid them in classification. The performance of a human as a (binary) classifier-in-the-loop is characterized by probabilities of correctly classifying objects of type TT and FF. These two probabilities depend on the dwell time, dd, spent collecting information at a point of interest (POI or interchangeably, target). The information gain associated with collecting information at a target is then a function of dwell time dd and discounted by the revisit time, RR, i.e., the duration between consecutive revisits to the same target. The objective of the problem of routing for classification is to optimally route the vehicles and determine the optimal dwell time at each target so as to maximize the total discounted information gain while visiting every target at least once. In this paper, we make a simplifying assumption that the information gain is discounted exponentially by the revisit time; this assumption enables one to decouple the problem of routing with the problem of determining optimal dwell time at each target for a single vehicle problem. For the multi-vehicle problem, we provide a fast heuristic to obtain the allocation of targets to each vehicle and the corresponding dwell time

    Autonomous Vehicle Public Transportation System: Scheduling and Admission Control

    Get PDF
    postprin

    Stochastic Programming Models For Electric Vehicles’ Operation: Network Design And Routing Strategies

    Get PDF
    Logistic and transportation (L&T) activities become a significant contributor to social and economic advances throughout the modern world Road L&T activities are responsible for a large percentage of CO2 emissions, with more than 24% of the total emission, which mostly caused by fossil fuel vehicles. Researchers, governments, and automotive companies put extensive effort to incorporate new solutions and innovations into the L&T system. As a result, Electric Vehicles (EVs) are introduced and universally accepted as one of the solutions to environmental issues. Subsequently, L&T companies are encouraged to adopt fleets of EVs. Integrating the EVs into the logistic and transportation systems introduces new challenges from strategic, planning, and operational perspectives. At the strategical level, one of the main challenges to be addressed to expand the EV charging infrastructures is the location of charging stations. Due to the longer charging time in EVs compared to the conventional vehicles, the parking locations can be considered as the candidate locations for installing charging stations. Another essential factor that should be considered in designing the Electric Vehicle Charging Station (EVCS) network is the size or capacity of charging stations. EV drivers\u27 arrival times in a community vary depending on various factors such as the purpose of the trip, time of the day, and day of the week. So, the capacity of stations and the number of chargers significantly affect the accessibility and utilization of charging stations. Also, the EVCSs can be equipped by distinct types of chargers, which are different in terms of installation cost, charging time, and charging price. City planners and EVCS owners can make low-risk and high-utilization investment decisions by considering EV users charging pattern and their willingness to pay for different charger types. At the operational level, managing a fleet of electric vehicles can offer several incentives to the L&T companies. EVs can be equipped with autonomous driving technologies to facilitate online decision making, on-board computation, and connectivity. Energy-efficient routing decisions for a fleet of autonomous electric vehicles (AEV) can significantly improve the asset utilization and vehicles’ battery life. However, employing AEVs also comes with new challenges. Two of the main operational challenges for AEVs in transport applications is their limited range and the availability of charging stations. Effective routing strategies for an AEV fleet require solving the vehicle routing problem (VRP) while considering additional constraints related to the limited range and number of charging stations. In this dissertation, we develop models and algorithms to address the challenges in integrating the EVs into the logistic and transportation systems
    • …
    corecore