984 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    An evolutionary ensemble learning for diagnosing COVID-19 via cough signals

    Get PDF
    © 2023 Published by Elsevier B.V. on behalf of Chinese Medical Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Objective The spread of the COVID-19 disease has caused great concern around the world and detecting the positive cases is crucial in curbing the pandemic. One of the symptoms of the disease is the dry cough it causes. It has previously been shown that cough signals can be used to identify a variety of diseases including tuberculosis, asthma, etc. In this paper, we proposed an algorithm to diagnose the COVID-19 disease via cough signals. Methods The proposed algorithm was an ensemble scheme that consists of a number of base learners, where each base learner used a different feature extractor method, including statistical approaches and convolutional neural networks (CNNs) for automatic feature extraction. Features were extracted from the raw signal and some transforms performed it, including Fourier, wavelet, Hilbert-Huang, and short-term Fourier transforms. The outputs of these base-learners were aggregated via a weighted voting scheme, with the weights optimised via an evolutionary paradigm. This paper also proposed a memetic algorithm for training the CNNs in the base-learners, which combined the speed of gradient descent (GD) algorithms and global search space coverage of the evolutionary algorithms. Results Experiments were performed on the proposed algorithm and different rival algorithms which included a number of CNN architectures in the literature and generic machine learning algorithms. The results suggested that the proposed algorithm achieves better performance compared to the existing algorithms in diagnosing COVID-19 via cough signals. Conclusion COVID-19 may be diagnosed via cough signals and CNNs may be employed to process these signals and it may be further improved by the optimization of CNN architecture.Peer reviewe

    Algorithms for CAD Tools VLSI Design

    Get PDF

    Backpropagation Neural Network Based on Local Search Strategy and Enhanced Multi-objective Evolutionary Algorithm for Breast Cancer Diagnosis

    Get PDF
    The role of intelligence techniques is becoming more significant in detecting and diagnosis of medical data. However, the performance of such methods is based on the algorithms or technique. In this paper, we develop an intelligent technique using multiobjective evolutionary method hybrid with a local search approach to enhance the backpropagation neural network. First, we enhance the famous multiobjective evolutionary algorithms, which is a non-dominated sorting genetic algorithm (NSGA-II). Then, we hybrid the enhanced algorithm with the local search strategy to ensures the acceleration of the convergence speed to the non-dominated front. In addition, such hybridization get the solutions achieved are well spread over it. As a result of using a local search method the quality of the Pareto optimal solutions are increased and all individuals in the population are enhanced. The key notion of the proposed algorithm was to  show a new technique to settle automaticly artificial neural network design problem. The empirical results generated by the proposed intelligent technique evaluated by applying to the breast cancer dataset and emphasize the capability of the proposed algorithm to improve the results. The network size and accuracy results of the proposed method are better than the previous methods. Therefore, the method is then capable of finding a proper number of hidden neurons and error rates of the BP algorithm

    An edge-driven multi-agent optimization model for infectious disease detection

    Get PDF
    This research work introduces a new intelligent framework for infectious disease detection by exploring various emerging and intelligent paradigms. We propose new deep learning architectures such as entity embedding networks, long-short term memory, and convolution neural networks, for accurately learning heterogeneous medical data in identifying disease infection. The multi-agent system is also consolidated for increasing the autonomy behaviours of the proposed framework, where each agent can easily share the derived learning outputs with the other agents in the system. Furthermore, evolutionary computation algorithms, such as memetic algorithms, and bee swarm optimization controlled the exploration of the hyper-optimization parameter space of the proposed framework. Intensive experimentation has been established on medical data. Strong results obtained confirm the superiority of our framework against the solutions that are state of the art, in both detection rate, and runtime performance, where the detection rate reaches 98% for handling real use cases.publishedVersio

    Evolutionary Computation, Optimization and Learning Algorithms for Data Science

    Get PDF
    A large number of engineering, science and computational problems have yet to be solved in a computationally efficient way. One of the emerging challenges is how evolving technologies grow towards autonomy and intelligent decision making. This leads to collection of large amounts of data from various sensing and measurement technologies, e.g., cameras, smart phones, health sensors, smart electricity meters, and environment sensors. Hence, it is imperative to develop efficient algorithms for generation, analysis, classification, and illustration of data. Meanwhile, data is structured purposefully through different representations, such as large-scale networks and graphs. We focus on data science as a crucial area, specifically focusing on a curse of dimensionality (CoD) which is due to the large amount of generated/sensed/collected data. This motivates researchers to think about optimization and to apply nature-inspired algorithms, such as evolutionary algorithms (EAs) to solve optimization problems. Although these algorithms look un-deterministic, they are robust enough to reach an optimal solution. Researchers do not adopt evolutionary algorithms unless they face a problem which is suffering from placement in local optimal solution, rather than global optimal solution. In this chapter, we first develop a clear and formal definition of the CoD problem, next we focus on feature extraction techniques and categories, then we provide a general overview of meta-heuristic algorithms, its terminology, and desirable properties of evolutionary algorithms
    corecore