10,055 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Comparing P2PTV Traffic Classifiers

    Get PDF
    Peer-to-Peer IP Television (P2PTV) applications represent one of the fastest growing application classes on the Internet, both in terms of their popularity and in terms of the amount of traffic they generate. While network operators require monitoring tools that can effectively analyze the traffic produced by these systems, few techniques have been tested on these mostly closed-source, proprietary applications. In this paper we examine the properties of three traffic classifiers applied to the problem of identifying P2PTV traffic. We report on extensive experiments conducted on traffic traces with reliable ground truth information, highlighting the benefits and shortcomings of each approach. The results show that not only their performance in terms of accuracy can vary significantly, but also that their usability features suggest different effective aspects that can be integrate

    Multitask Learning for Network Traffic Classification

    Full text link
    Traffic classification has various applications in today's Internet, from resource allocation, billing and QoS purposes in ISPs to firewall and malware detection in clients. Classical machine learning algorithms and deep learning models have been widely used to solve the traffic classification task. However, training such models requires a large amount of labeled data. Labeling data is often the most difficult and time-consuming process in building a classifier. To solve this challenge, we reformulate the traffic classification into a multi-task learning framework where bandwidth requirement and duration of a flow are predicted along with the traffic class. The motivation of this approach is twofold: First, bandwidth requirement and duration are useful in many applications, including routing, resource allocation, and QoS provisioning. Second, these two values can be obtained from each flow easily without the need for human labeling or capturing flows in a controlled and isolated environment. We show that with a large amount of easily obtainable data samples for bandwidth and duration prediction tasks, and only a few data samples for the traffic classification task, one can achieve high accuracy. We conduct two experiment with ISCX and QUIC public datasets and show the efficacy of our approach

    KISS: Stochastic Packet Inspection Classifier for UDP Traffic

    Get PDF
    This paper proposes KISS, a novel Internet classifica- tion engine. Motivated by the expected raise of UDP traffic, which stems from the momentum of Peer-to-Peer (P2P) streaming appli- cations, we propose a novel classification framework that leverages on statistical characterization of payload. Statistical signatures are derived by the means of a Chi-Square-like test, which extracts the protocol "format," but ignores the protocol "semantic" and "synchronization" rules. The signatures feed a decision process based either on the geometric distance among samples, or on Sup- port Vector Machines. KISS is very accurate, and its signatures are intrinsically robust to packet sampling, reordering, and flow asym- metry, so that it can be used on almost any network. KISS is tested in different scenarios, considering traditional client-server proto- cols, VoIP, and both traditional and new P2P Internet applications. Results are astonishing. The average True Positive percentage is 99.6%, with the worst case equal to 98.1,% while results are al- most perfect when dealing with new P2P streaming applications

    Discriminative models for multi-instance problems with tree-structure

    Full text link
    Modeling network traffic is gaining importance in order to counter modern threats of ever increasing sophistication. It is though surprisingly difficult and costly to construct reliable classifiers on top of telemetry data due to the variety and complexity of signals that no human can manage to interpret in full. Obtaining training data with sufficiently large and variable body of labels can thus be seen as prohibitive problem. The goal of this work is to detect infected computers by observing their HTTP(S) traffic collected from network sensors, which are typically proxy servers or network firewalls, while relying on only minimal human input in model training phase. We propose a discriminative model that makes decisions based on all computer's traffic observed during predefined time window (5 minutes in our case). The model is trained on collected traffic samples over equally sized time window per large number of computers, where the only labels needed are human verdicts about the computer as a whole (presumed infected vs. presumed clean). As part of training the model itself recognizes discriminative patterns in traffic targeted to individual servers and constructs the final high-level classifier on top of them. We show the classifier to perform with very high precision, while the learned traffic patterns can be interpreted as Indicators of Compromise. In the following we implement the discriminative model as a neural network with special structure reflecting two stacked multi-instance problems. The main advantages of the proposed configuration include not only improved accuracy and ability to learn from gross labels, but also automatic learning of server types (together with their detectors) which are typically visited by infected computers
    corecore