90 research outputs found

    Mems (Micro-Electro-Mechanical-Systems) Based Microfluidic Platforms for Magnetic Cell Separation

    Get PDF
    Microfluidic platforms for magnetic cell separation were developed and investigated for isolation of magnetic particles and magnetically tagged cells from a fluidic sample. Two types of magnetic separation platforms were considered: an Isodynamic Open Gradient Magnetic Sorter (OGMS) and a multistage bio-ferrograph. Miniaturized magnets were designed using magnetostatic simulation software, microfluidic channels were fabricated using microfabrication technology and magnetic separation was investigated using video microscopy and digital image processing. The isodynamic OGMS consisted of an external magnetic circuit and a microfabricated channel (biochip) with embedded magnetic elements. The biochip is placed inside the magnetic field of the external circuit to obtain nearly constant energy density gradient in the portion of the channel used for separation. The microfabrication process involved improving adhesion of thick SU-8 to Pyrex, forming enclosed channels using a low temperature SU-8 adhesive bonding, and fabricating patterned plating molds on both sides of the bonded wafers. Adhesion of SU-8 to Pyrex was improved by using a highly crosslinked thin SU-8 adhesion layer, and enclosed microchannels were fabricated using selectively exposed SU-8 bond formation layers. Electroplating molds were fabricated using KMPR photoresists and were integrated on both sides of the bonded wafers. The multistage bio-ferrograph consisted of a microfabricated enclosed channel placed on the surface of a multi-unit magnet (4 trapezoidal magnets placed in series) assembly such that magnetic cells from a flowing stream would be deposited on designated locations. The OGMS was able to deflect magnetic particles by 500-1000 microns and the capture efficiencies of magnetic particles and cells with the multistage bio-ferrograph were 80-85 percent and 99.5 percent, respectivel

    Mems (Micro-Electro-Mechanical-Systems) Based Microfluidic Platforms for Magnetic Cell Separation

    Get PDF
    Microfluidic platforms for magnetic cell separation were developed and investigated for isolation of magnetic particles and magnetically tagged cells from a fluidic sample. Two types of magnetic separation platforms were considered: an Isodynamic Open Gradient Magnetic Sorter (OGMS) and a multistage bio-ferrograph. Miniaturized magnets were designed using magnetostatic simulation software, microfluidic channels were fabricated using microfabrication technology and magnetic separation was investigated using video microscopy and digital image processing. The isodynamic OGMS consisted of an external magnetic circuit and a microfabricated channel (biochip) with embedded magnetic elements. The biochip is placed inside the magnetic field of the external circuit to obtain nearly constant energy density gradient in the portion of the channel used for separation. The microfabrication process involved improving adhesion of thick SU-8 to Pyrex, forming enclosed channels using a low temperature SU-8 adhesive bonding, and fabricating patterned plating molds on both sides of the bonded wafers. Adhesion of SU-8 to Pyrex was improved by using a highly crosslinked thin SU-8 adhesion layer, and enclosed microchannels were fabricated using selectively exposed SU-8 bond formation layers. Electroplating molds were fabricated using KMPR photoresists and were integrated on both sides of the bonded wafers. The multistage bio-ferrograph consisted of a microfabricated enclosed channel placed on the surface of a multi-unit magnet (4 trapezoidal magnets placed in series) assembly such that magnetic cells from a flowing stream would be deposited on designated locations. The OGMS was able to deflect magnetic particles by 500-1000 microns and the capture efficiencies of magnetic particles and cells with the multistage bio-ferrograph were 80-85 percent and 99.5 percent, respectivel

    A centrifugal microfluidic platform for capturing, assaying and manipulation of beads and biological cells

    Get PDF
    Microfluidics is deemed a field with great opportunities, especially for applications in medical diagnostics. The vision is to miniaturize processes typically performed in a central clinical lab into small, simple to use devices - so called lab-on-a-chip (LOC) systems. A wide variety of concepts for liquid actuation have been developed, including pressure driven flow, electro-osmotic actuation or capillary driven methods. This work is based on the centrifugal platform (lab-on-a-disc). Fluid actuation is performed by the forces induced due to the rotation of the disc, thus eliminating the need for external pumps since only a spindle motor is necessary to rotate the disc and propel the liquids inside of the micro structures. Lab-on-a-disc systems are especially promising for point-of-care applications involving particles or cells due to the centrifugal force present in a rotating system. Capturing, assaying and identification of biological cells and microparticles are important operations for lab-on-a-disc platforms, and the focus of this work is to provide novel building blocks towards an integrated system for cell and particle based assays. As a main outcome of my work, a novel particle capturing and manipulation scheme on a centrifugal microfluidic platform has been developed. To capture particles (biological cells or micro-beads) I designed an array of V-shaped micro cups and characterized it. Particles sediment under stagnant flow conditions into the array where they are then mechanically trapped in spatially well-defined locations. Due to the absence of flow during the capturing process, i.e. particle sedimentation is driven by the artificial gravity field on the centrifugal platform, the capture efficiency of this approach is close to 100% which is notably higher than values reported for typical pressure driven systems. After capturing the particles, the surrounding medium can easily be exchanged to expose them to various conditions such as staining solutions or washing buffers, and thus perform assays on the captured particles. By scale matching the size of the capturing elements to the size of the particles, sharply peaked single occupancy can be achieved. Since all particles are arrayed in the same focal plane in spatially well defined locations, operations such as counting or fluorescent detection can be performed easily. The application of this platform to perform multiplexed bead-based immunoassays as well as the discrimination of various cell types based on intra cellular and membrane based markers using fluorescently tagged antibodies is demonstrated. Additionally, methods to manipulate captured particles either in batch mode or on an individual particle level have been developed and characterized. Batch release of captured particles is performed by a novel magnetic actuator which is solely controlled by the rotation frequency of the disc. Furthermore, the application of this actuator to rapidly mix liquids is shown. Manipulation of individual particles is performed using an optical tweezers setup which has been developed as part of this work. Additionally, this optical module also provides fluorescence detection capabilities. This is the first time that optical tweezers have been combined with a centrifugal microfluidic system. This work presents the core technology for an integrated centrifugal platform to perform cell and particle based assays for fundamental research as well as for point-of- care applications. The key outputs of my specific work are: 1. Design, fabrication and characterization of a novel particle capturing scheme on a centrifugal microfluidic platform (V-cups) with very high capture efficiency (close to 100%) and sharply peaked single occupancy (up to 99.7% single occupancy). 2. A novel rotation frequency controlled magnetic actuator for releasing captured particles as well as for rapidly mixing liquids has been developed, manufactured and characterized. 3. The V-cup platform has successfully been employed to capture cells and perform multi-step antibody staining assays for cell discrimination. 4. An optical tweezers setup has been built and integrated into a centrifugal teststand, and successful manipulation of individual particles trapped in the V-cup array is demonstrated

    Investigation of Secondary (Dean) Flows in Curved Microchannels and Application to Microparticle Sample Preparation

    Get PDF
    Exchanging the solution of microparticles from a complex source fluid to a target clean buffer is important for sample preparation in portable microfluidic and point-of-care diagnostic devices. Current portable solution exchange methods are often limited in throughput or have low efficiencies. In this thesis, a novel method involving inertial focusing of microparticles at the inner wall of a curved channel and secondary Dean flow-based exchange of their fluid is investigated. The fluid behavior in curved microchannels is thoroughly studied and the effects of radius of curvature, hydraulic diameter, width and height of the channel and viscosity of the fluid on the development of Dean vortices are investigated experimentally and numerically. A comprehensive correlation for estimating the average lateral Dean velocity of the fluid is also proposed. The outcomes of the fluidic study is then combined with inertial particle focusing to devise a microfluidic platform for exchanging the solution of 11 m and 19 m microparticles. This was achieved with an unprecedented flow rate of 1 mL/min and throughput of 10000 particle/s at high efficiencies. Additionally, the application of the device for isolation of cell surrogates from a bacterial solution is shown. This technology can be used as a portable micro-centrifuge for sample preparation in point-of-care devices

    Magnetic Nanoparticle Enhanced Actuation Strategy for mixing, separation, and detection of biomolecules in a Microfluidic Lab-on-a-Chip System

    Get PDF
    Magnetic nanoparticle (MNP) combined with biomolecules in a microfluidic system can be efficiently used in various applications such as mixing, pre-concentration, separation and detection. They can be either integrated for point-of care applications or used individually in the area of bio-defense, drug delivery, medical diagnostics, and pharmaceutical development. The interaction of magnetic fields with magnetic nanoparticles in microfluidic flows will allow simplifying the complexity of the present generation separation and detection systems. The ability to understand the dynamics of these interactions is a prerequisite for designing and developing more efficient systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design, develop and optimize the magnetic microfluidic systems for mixing, separation and detection. Different strategies to combine magnetism with microfluidic technology are explored; a time-dependent magnetic actuation is used for efficiently mixing low volume of samples whereas tangential microfluidic channels were fabricated to demonstrate a simple low cost magnetic switching for continuous separation of biomolecules. A simple low cost generic microfluidic platform is developed using assembly of readily available permanent magnets and electromagnets. Microfluidic channels were fabricated at much lower cost and with a faster construction time using our in-house developed micromolding technique that does not require a clean room. Residence-time distribution (RTD) analysis obtained using dynamic light scattering data from samples was successfully used for the first time in microfluidic system to characterize the performance. Both advanced multiphysics finite element models and proof of concept experimentation demonstrates that MNPs when tagged with biomolecules can be easily manipulated within the microchannel. They can be precisely captured, separated or detected with high efficiency and ease of operation. Presence of MNPs together with time-dependent magnetic actuation also helps in mixing as well as tagging biomolecules on chip, which is useful for point-of-care applications. The advanced mathematical model that takes into account mass and momentum transport, convection & diffusion, magnetic body forces acting on magnetic nanoparticles further demonstrates that the performance of microfluidic surface-based bio-assay can be increased by incorporating the idea of magnetic actuation. The numerical simulations were helpful in testing and optimizing key design parameters and demonstrated that fluid flow rate, magnetic field strength, and magnetic nanoparticle size had dramatic impact on the performance of microfluidic systems studied. This work will also emphasize the importance of considering magnetic nanoparticles interactions for a complete design of magnetic nanoparticle-based Lab-on-a-chip system where all the laboratory unit operations can be easily integrated. The strategy demonstrated in this work will not only be easy to implement but also allows for versatile biochip design rules and provides a simple approach to integrate external elements for enhancing mixing, separation and detection of biomolecules. The vast applications of this novel concept studied in this work demonstrate its potential of to be applied to other kinds of on-chip immunoassays in future. We think that the possibility of integrating magnetism with microfluidic-based bioassay on a disposable chip is a very promising and versatile approach for point-of care diagnostics especially in resource-limited settings

    3D printed microfluidic devices for particle and cell analysis

    Get PDF
    Particle/cell analysis is crucial in many health, industrial and environmental monitoring processes. Its integration into miniaturised lab-on-a-chip systems enables a host of portable technologies. However, current lab-on-a-chip lithographical fabrication methods are costly, time-consuming and restrictive in design, impeding their widespread implementation. This has led to 3D printing being explored as an alternative in recent years, due to its ability to form devices in a single step, and its three-dimensional freedom. [Continues.

    Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    Get PDF
    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device

    Manipulation of magnetic microparticles in liquid phases for on-chip biomedical analysis methods

    Get PDF
    Magnetic microparticles and their application in bioanalytical microfluidic systems have been steadily gaining interest in recent years. This progress is fueled by the comparatively large and long range magnetic forces that can be obtained independently of the fluidic flow pattern. This thesis work presents new approaches for using magnetic microparticles in Lab-on-a-Chip systems. The first approach deals with the design of a magnetic droplet manipulation system and the second combines magnetic particle actuation with integrated optical detection. The applicability of both systems for miniaturized bioanalysis will be shown, demonstrating the potential of magnetic particle based Lab-on-a-Chip systems. The magnetic droplet manipulation system tackles the handling of small liquid volumes, which is an important task in miniaturized analytical systems. The careful adjustment of hydrophilic/hydrophobic surface properties and interfacial tensions leads to the design of a system, where small droplets are manipulated in a controllable fashion. The system's setup permits the direct implementation of bioanalytical protocols and two different procedures are in consequence examined. Based on a commercial laboratory kit, a platform for the on-chip extraction and purification of DNA will be designed. The miniaturized setup allows the user to capture and clean the DNA obtained from a raw cell sample containing as little as 10 cells, which is several orders of magnitude lower than known for macroscopic systems. A similar performance is observed for the colorimetric antibody detection further-on evaluated in the droplet manipulation system, where the small sample volumes permit a significant reduction of the reaction times. With the possibility of concentrating the biomolecules of interest on the particle surface, a sensitive and fast immunosorbent assay can be devised. A further miniaturization is examined in a CMOS system, which combines magnetic actuation and optical detection. The small dimensions of the actuation system allow the manipulation of single magnetic microparticles and the integration of Single Photon Avalanche Diodes (SPADs) enables their optical detection. An innovative detection algorithm permits hereby to distinguish the particles in size and, in combination with a velocity measurement, to evaluate the magnetic properties of the detected particles. In consequence, bioanalysis on a single magnetic particle using fluorescent measurements can be performed, as is shown by preliminary experiments

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Biochip-Integrable Microfluidic Particle Separation Techniques for Biomedical Use

    Get PDF
    Biochip-integrable sorting and separation of micron-sized particles have an increasing importance in biomedical diagnostics, biochemical analyses, food and chemical processing, and environmental assessment. By employing the unique characteristics of microscale flow phenomena, various techniques have been established for fast and accurate separation, and to sort cells or particles in a continuous manner. As in classical separation procedures, the biochip-integrable size-fractionation of particles or cells could be realized by passive or active way. Passive procedures, which do not require external force-field, utilize the interaction between particles-particle, flow-particle, and the channel structure-particle to separate different-sized particles. Meanwhile, the active separation techniques make use of external force-field in various forms. This doctoral thesis provides a novel biochip-integrable pathogen detection device (Flow Through Nematode Filter, FTNF), and a novel application of an asymmetric column structure, which called deterministic lateral displacement (DLD) device. The working principles are explained in detail, and performances of the devices are discussed with the results of the measurements. The main target of this represented work is applications in medicine and biomedical research but we are also open for other application areas. The use of these simple microfluidic devices will make it possible to extend the use of cell-sorting to the point of care, closer to the patient at the clinic or in the field
    corecore