681 research outputs found

    Post-processing partitions to identify domains of modularity optimization

    Full text link
    We introduce the Convex Hull of Admissible Modularity Partitions (CHAMP) algorithm to prune and prioritize different network community structures identified across multiple runs of possibly various computational heuristics. Given a set of partitions, CHAMP identifies the domain of modularity optimization for each partition ---i.e., the parameter-space domain where it has the largest modularity relative to the input set---discarding partitions with empty domains to obtain the subset of partitions that are "admissible" candidate community structures that remain potentially optimal over indicated parameter domains. Importantly, CHAMP can be used for multi-dimensional parameter spaces, such as those for multilayer networks where one includes a resolution parameter and interlayer coupling. Using the results from CHAMP, a user can more appropriately select robust community structures by observing the sizes of domains of optimization and the pairwise comparisons between partitions in the admissible subset. We demonstrate the utility of CHAMP with several example networks. In these examples, CHAMP focuses attention onto pruned subsets of admissible partitions that are 20-to-1785 times smaller than the sets of unique partitions obtained by community detection heuristics that were input into CHAMP.Comment: http://www.mdpi.com/1999-4893/10/3/9

    Sampling unknown large networks restricted by low sampling rates

    Full text link
    Graph sampling plays an important role in data mining for large networks. Specifically, larger networks often correspond to lower sampling rates. Under the situation, traditional traversal-based samplings for large networks usually have an excessive preference for densely-connected network core nodes. Aim at this issue, this paper proposes a sampling method for unknown networks at low sampling rates, called SLSR, which first adopts a random node sampling to evaluate a degree threshold, utilized to distinguish the core from periphery, and the average degree in unknown networks, and then runs a double-layer sampling strategy on the core and periphery. SLSR is simple that results in a high time efficiency, but experimental evaluation confirms that the proposed method can accurately preserve many critical structures of unknown large networks at sampling rates not exceeding 10%.Comment: 19 pages,14 figure

    Analysis of Multiplex Social Networks with R

    Get PDF
    Multiplex social networks are characterized by a common set of actors connected through multiple types of relations. The multinet package provides a set of R functions to analyze multiplex social networks within the more general framework of multilayer networks, where each type of relation is represented as a layer in the network. The package contains functions to import/export, create and manipulate multilayer networks, implementations of several state-of-the-art multiplex network analysis algorithms, e.g., for centrality measures, layer comparison, community detection and visualization. Internally, the package is mainly written in native C++ and integrated with R using the Rcpp package

    Domain-based user embedding for competing events on social media

    Full text link
    Online social networks offer vast opportunities for computational social science, but effective user embedding is crucial for downstream tasks. Traditionally, researchers have used pre-defined network-based user features, such as degree, and centrality measures, and/or content-based features, such as posts and reposts. However, these measures may not capture the complex characteristics of social media users. In this study, we propose a user embedding method based on the URL domain co-occurrence network, which is simple but effective for representing social media users in competing events. We assessed the performance of this method in binary classification tasks using benchmark datasets that included Twitter users related to COVID-19 infodemic topics (QAnon, Biden, Ivermectin). Our results revealed that user embeddings generated directly from the retweet network, and those based on language, performed below expectations. In contrast, our domain-based embeddings outperformed these methods while reducing computation time. These findings suggest that the domain-based user embedding can serve as an effective tool to characterize social media users participating in competing events, such as political campaigns and public health crises.Comment: Computational social science applicatio

    Distance dead or alive: online social networks from a geography perspective

    Get PDF

    TULIP 4

    Get PDF
    Tulip is an information visualization framework dedicated to the analysis and visualization of relational data. Based on more than 15 years of research and development, Tulip is built on a suite of tools and techniques , that can be used to address a large variety of domain-specific problems. With Tulip, we aim to provide Python and/or C++ developers a complete library, supporting the design of interactive information visualization applications for relational data, that can be customized to address a wide range of visualization problems. In its current iteration, Tulip enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations. This development pipeline makes the framework efficient for creating research prototypes as well as developing end-user applications. The recent addition of a complete Python programming layer wraps up Tulip as an ideal tool for fast prototyping and treatment automation, allowing to focus on problem solving, and as a great system for teaching purposes at all education levels

    The specificity and robustness of long-distance connections in weighted, interareal connectomes

    Full text link
    Brain areas' functional repertoires are shaped by their incoming and outgoing structural connections. In empirically measured networks, most connections are short, reflecting spatial and energetic constraints. Nonetheless, a small number of connections span long distances, consistent with the notion that the functionality of these connections must outweigh their cost. While the precise function of these long-distance connections is not known, the leading hypothesis is that they act to reduce the topological distance between brain areas and facilitate efficient interareal communication. However, this hypothesis implies a non-specificity of long-distance connections that we contend is unlikely. Instead, we propose that long-distance connections serve to diversify brain areas' inputs and outputs, thereby promoting complex dynamics. Through analysis of five interareal network datasets, we show that long-distance connections play only minor roles in reducing average interareal topological distance. In contrast, areas' long-distance and short-range neighbors exhibit marked differences in their connectivity profiles, suggesting that long-distance connections enhance dissimilarity between regional inputs and outputs. Next, we show that -- in isolation -- areas' long-distance connectivity profiles exhibit non-random levels of similarity, suggesting that the communication pathways formed by long connections exhibit redundancies that may serve to promote robustness. Finally, we use a linearization of Wilson-Cowan dynamics to simulate the covariance structure of neural activity and show that in the absence of long-distance connections, a common measure of functional diversity decreases. Collectively, our findings suggest that long-distance connections are necessary for supporting diverse and complex brain dynamics.Comment: 18 pages, 8 figure

    A visual multivariate dynamic egocentric network exploration tool

    Get PDF
    Visualizing multivariate dynamic networks is a challenging task. The evolution of the dynamic network within the temporal axis must be depicted in conjunction with the associated multivariate attributes. In this thesis, an exploratory visual analytics tool is proposed to display multivariate dynamic networks with spatial attributes. The proposed tool displays the distribution of multivariate temporal domain and network attributes in scattered views. Moreover, in order to expose the evolution of a single or a group of nodes in the dynamic network along the temporal axis, an egocentric approach is applied in which a node is represented with its neighborhood as an ego-network. This approach allows users to observe a node's surrounding environment along the temporal axis. On top of the traditional ego-network visualization methods, such as timelines, the proposed tool encodes ego-networks as feature vectors consisting of the domain and network attributes and projects them onto 2D views. As a result, distances between projected ego-networks represent the dissimilarity across temporal axis in a single view. The proposed tool is demonstrated with a real-world use case scenario on merchant networks obtained from a one-year long credit card transaction

    Complex Networks from Classical to Quantum

    Full text link
    Recent progress in applying complex network theory to problems in quantum information has resulted in a beneficial crossover. Complex network methods have successfully been applied to transport and entanglement models while information physics is setting the stage for a theory of complex systems with quantum information-inspired methods. Novel quantum induced effects have been predicted in random graphs---where edges represent entangled links---and quantum computer algorithms have been proposed to offer enhancement for several network problems. Here we review the results at the cutting edge, pinpointing the similarities and the differences found at the intersection of these two fields.Comment: 12 pages, 4 figures, REVTeX 4-1, accepted versio

    Visual Analytics Methods for Exploring Geographically Networked Phenomena

    Get PDF
    abstract: The connections between different entities define different kinds of networks, and many such networked phenomena are influenced by their underlying geographical relationships. By integrating network and geospatial analysis, the goal is to extract information about interaction topologies and the relationships to related geographical constructs. In the recent decades, much work has been done analyzing the dynamics of spatial networks; however, many challenges still remain in this field. First, the development of social media and transportation technologies has greatly reshaped the typologies of communications between different geographical regions. Second, the distance metrics used in spatial analysis should also be enriched with the underlying network information to develop accurate models. Visual analytics provides methods for data exploration, pattern recognition, and knowledge discovery. However, despite the long history of geovisualizations and network visual analytics, little work has been done to develop visual analytics tools that focus specifically on geographically networked phenomena. This thesis develops a variety of visualization methods to present data values and geospatial network relationships, which enables users to interactively explore the data. Users can investigate the connections in both virtual networks and geospatial networks and the underlying geographical context can be used to improve knowledge discovery. The focus of this thesis is on social media analysis and geographical hotspots optimization. A framework is proposed for social network analysis to unveil the links between social media interactions and their underlying networked geospatial phenomena. This will be combined with a novel hotspot approach to improve hotspot identification and boundary detection with the networks extracted from urban infrastructure. Several real world problems have been analyzed using the proposed visual analytics frameworks. The primary studies and experiments show that visual analytics methods can help analysts explore such data from multiple perspectives and help the knowledge discovery process.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    corecore