3,471 research outputs found

    Improving Data Transmission Rate with Self Healing Activation Model for Intrusion Detection with Enhanced Quality of Service

    Get PDF
    Several types of attacks can easily compromise a Wireless Sensor Network (WSN). Although not all intrusions can be predicted, they may cause significant damage to the network and its nodes before being discovered. Due to its explosive growth and the infinite scope in terms of applications and processing brought about by 5G, WSN is becoming more and more deeply embedded in daily life. Security breaches, downed services, faulty hardware, and buggy software can all cripple these enormous systems. As a result, the platform becomes unmaintainable when there are a million or more interconnected devices. When it comes to network security, intrusion detection technology plays a crucial role, with its primary function being to constantly monitor the health of a network and, if any aberrant behavior is detected, to issue a timely warning to network administrators. The current network's availability and dependability are directly tied to the efficacy and timeliness of the Intrusion Detection System (IDS). An Intrusion-Tolerant system would incorporate self-healing mechanisms to restore compromised data. System attributes such as readiness for accurate service, supply identical and correct data, confidentiality, and availability are necessary for a system to merit trust. In this research, self-healing methods are considered that can detect intrusions and can remove with intellectual strategies that can make a system fully autonomous and fix any problems it encounters. In this study, a new architecture for an Intrusion Tolerant Self Healing Activation Model for Improved Data Transmission Rate (ITSHAM-IDTR) is proposed for accurate detection of intrusions and self repairing the network for better performance, which boosts the server's performance quality and enables it to mend itself without any intervention from the administrator. When compared to the existing paradigm, the proposed model performs in both self-healing and increased data transmission rates.

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option

    Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

    Get PDF
    Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.publishedVersio

    ICT and adult literacy, numeracy and ESOL

    Get PDF
    Mellar, H., Kambouri, M., Sanderson, M., and Pavlou, V. (2004) ICT and adult literacy, numeracy and ESOL. London: NRDC. Available at: http://www.nrdc.org.uk/uploads/documents/doc_258.pdfResearch report for NRDCThis project set out to obtain a picture of present teaching practice in the use of ICT in adult literacy, numeracy and ESOL within formal provision. (http://www.nrdc.org.uk/uploads/documents/doc_258.pdf
    • …
    corecore