3,216 research outputs found

    Inferring Person-to-person Proximity Using WiFi Signals

    Get PDF
    Today's societies are enveloped in an ever-growing telecommunication infrastructure. This infrastructure offers important opportunities for sensing and recording a multitude of human behaviors. Human mobility patterns are a prominent example of such a behavior which has been studied based on cell phone towers, Bluetooth beacons, and WiFi networks as proxies for location. However, while mobility is an important aspect of human behavior, understanding complex social systems requires studying not only the movement of individuals, but also their interactions. Sensing social interactions on a large scale is a technical challenge and many commonly used approaches---including RFID badges or Bluetooth scanning---offer only limited scalability. Here we show that it is possible, in a scalable and robust way, to accurately infer person-to-person physical proximity from the lists of WiFi access points measured by smartphones carried by the two individuals. Based on a longitudinal dataset of approximately 800 participants with ground-truth interactions collected over a year, we show that our model performs better than the current state-of-the-art. Our results demonstrate the value of WiFi signals in social sensing as well as potential threats to privacy that they imply

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges

    Hybrid Building/Floor Classification and Location Coordinates Regression Using A Single-Input and Multi-Output Deep Neural Network for Large-Scale Indoor Localization Based on Wi-Fi Fingerprinting

    Full text link
    In this paper, we propose hybrid building/floor classification and floor-level two-dimensional location coordinates regression using a single-input and multi-output (SIMO) deep neural network (DNN) for large-scale indoor localization based on Wi-Fi fingerprinting. The proposed scheme exploits the different nature of the estimation of building/floor and floor-level location coordinates and uses a different estimation framework for each task with a dedicated output and hidden layers enabled by SIMO DNN architecture. We carry out preliminary evaluation of the performance of the hybrid floor classification and floor-level two-dimensional location coordinates regression using new Wi-Fi crowdsourced fingerprinting datasets provided by Tampere University of Technology (TUT), Finland, covering a single building with five floors. Experimental results demonstrate that the proposed SIMO-DNN-based hybrid classification/regression scheme outperforms existing schemes in terms of both floor detection rate and mean positioning errors.Comment: 6 pages, 4 figures, 3rd International Workshop on GPU Computing and AI (GCA'18

    Supporting Large Scale Communication Systems on Infrastructureless Networks Composed of Commodity Mobile Devices: Practicality, Scalability, and Security.

    Full text link
    Infrastructureless Delay Tolerant Networks (DTNs) composed of commodity mobile devices have the potential to support communication applications resistant to blocking and censorship, as well as certain types of surveillance. In this thesis we study the utility, practicality, robustness, and security of these networks. We collected two sets of wireless connectivity traces of commodity mobile devices with different granularity and scales. The first dataset is collected through active installation of measurement software on volunteer users' own smartphones, involving 111 users of a DTN microblogging application that we developed. The second dataset is collected through passive observation of WiFi association events on a university campus, involving 119,055 mobile devices. Simulation results show consistent message delivery performances of the two datasets. Using an epidemic flooding protocol, the large network achieves an average delivery rate of 0.71 in 24 hours and a median delivery delay of 10.9 hours. We show that this performance is appropriate for sharing information that is not time sensitive, e.g., blogs and photos. We also show that using an energy efficient variant of the epidemic flooding protocol, even the large network can support text messages while only consuming 13.7% of a typical smartphone battery in 14 hours. We found that the network delivery rate and delay are robust to denial-of-service and censorship attacks. Attacks that randomly remove 90% of the network participants only reduce delivery rates by less than 10%. Even when subjected to targeted attacks, the network suffered a less than 10% decrease in delivery rate when 40% of its participants were removed. Although structurally robust, the openness of the proposed network introduces numerous security concerns. The Sybil attack, in which a malicious node poses as many identities in order to gain disproportionate influence, is especially dangerous as it breaks the assumption underlying majority voting. Many defenses based on spatial variability of wireless channels exist, and we extend them to be practical for ad hoc networks of commodity 802.11 devices without mutual trust. We present the Mason test, which uses two efficient methods for separating valid channel measurement results of behaving nodes from those falsified by malicious participants.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120779/1/liuyue_1.pd

    STCP: Receiver-agnostic Communication Enabled by Space-Time Cloud Pointers

    Get PDF
    Department of Electrical and Computer Engineering (Computer Engineering)During the last decade, mobile communication technologies have rapidly evolved and ubiquitous network connectivity is nearly achieved. However, we observe that there are critical situations where none of the existing mobile communication technologies is usable. Such situations are often found when messages need to be delivered to arbitrary persons or devices that are located in a specific space at a specific time. For instance at a disaster scene, current communication methods are incapable of delivering messages of a rescuer to the group of people at a specific area even when their cellular connections are alive because the rescuer cannot specify the receivers of the messages. We name this as receiver-unknown problem and propose a viable solution called SpaceMessaging. SpaceMessaging adopts the idea of Post-it by which we casually deliver our messages to a person who happens to visit a location at a random moment. To enable SpaceMessaging, we realize the concept of posting messages to a space by implementing cloud-pointers at a cloud server to which messages can be posted and from which messages can fetched by arbitrary mobile devices that are located at that space. Our Android-based prototype of SpaceMessaging, which particularly maps a cloud-pointer to a WiFi signal fingerprint captured from mobile devices, demonstrates that it first allows mobile devices to deliver messages to a specific space and to listen to the messages of a specific space in a highly accurate manner (with more than 90% of Recall)
    corecore