204 research outputs found

    Toward Future Automatic Warehouses: An Autonomous Depalletizing System Based on Mobile Manipulation and 3D Perception

    Get PDF
    This paper presents a mobile manipulation platform designed for autonomous depalletizing tasks. The proposed solution integrates machine vision, control and mechanical components to increase flexibility and ease of deployment in industrial environments such as warehouses. A collaborative robot mounted on a mobile base is proposed, equipped with a simple manipulation tool and a 3D in-hand vision system that detects parcel boxes on a pallet, and that pulls them one by one on the mobile base for transportation. The robot setup allows to avoid the cumbersome implementation of pick-and-place operations, since it does not require lifting the boxes. The 3D vision system is used to provide an initial estimation of the pose of the boxes on the top layer of the pallet, and to accurately detect the separation between the boxes for manipulation. Force measurement provided by the robot together with admittance control are exploited to verify the correct execution of the manipulation task. The proposed system was implemented and tested in a simplified laboratory scenario and the results of experimental trials are reported

    Dynamic Weight Estimation of Non-Singulated Objects

    Get PDF
    Weight estimation is a common practice throughout many industries, though it typically requires that the objects to be weighed remain motionless. More often than not, it is beneficial to allow objects to move freely through a process, so that time is not lost in stopping and rerouting the object to a weight sensor. This is the basis for achieving dynamic weighing, where the object to be measured continues to have motion relative to the weighing sensor. Typically, this has been achieved with signal processing techniques that produce favourable results with singular objects. The challenge is when multiple objects are grouped and moving together; that is, they are non-singulated and cannot be weighed separately. This work reports the development of an In-Motion Weight Sensor array, which is a new dynamic weighing system with a new real-time signal processing method for estimating the weight of multiple, non-singulated objects. The array system employs a recursive least squares estimation algorithm to combine weight sensor data and the locations of boxes that are travelling through the array to attribute fractions of a box’s load to the appropriate individual sensors. To demonstrate the performance of the proposed system, a full-scale experimental setup has been built and tested. Through statistical analysis of the weight estimates of a variety of groups of objects, it is shown that the system can produce results within 10% measurement error for the majority of non-singulated cases. It is most effective for non-rigid boxes that also fall within the mid-range for package size and weight, around 0.05m² and 1-3kg, respectively. Changes to the mechanical design can vastly improve performance accuracy and precision, and recommendations for these alterations are given in the conclusion

    Towards Autonomous and Safe Last-mile Deliveries with AI-augmented Self-driving Delivery Robots

    Full text link
    In addition to its crucial impact on customer satisfaction, last-mile delivery (LMD) is notorious for being the most time-consuming and costly stage of the shipping process. Pressing environmental concerns combined with the recent surge of e-commerce sales have sparked renewed interest in automation and electrification of last-mile logistics. To address the hurdles faced by existing robotic couriers, this paper introduces a customer-centric and safety-conscious LMD system for small urban communities based on AI-assisted autonomous delivery robots. The presented framework enables end-to-end automation and optimization of the logistic process while catering for real-world imposed operational uncertainties, clients' preferred time schedules, and safety of pedestrians. To this end, the integrated optimization component is modeled as a robust variant of the Cumulative Capacitated Vehicle Routing Problem with Time Windows, where routes are constructed under uncertain travel times with an objective to minimize the total latency of deliveries (i.e., the overall waiting time of customers, which can negatively affect their satisfaction). We demonstrate the proposed LMD system's utility through real-world trials in a university campus with a single robotic courier. Implementation aspects as well as the findings and practical insights gained from the deployment are discussed in detail. Lastly, we round up the contributions with numerical simulations to investigate the scalability of the developed mathematical formulation with respect to the number of robotic vehicles and customers

    Learning-based robotic manipulation for dynamic object handling : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronic Engineering at the School of Food and Advanced Technology, Massey University, Turitea Campus, Palmerston North, New Zealand

    Get PDF
    Figures are re-used in this thesis with permission of their respective publishers or under a Creative Commons licence.Recent trends have shown that the lifecycles and production volumes of modern products are shortening. Consequently, many manufacturers subject to frequent change prefer flexible and reconfigurable production systems. Such schemes are often achieved by means of manual assembly, as conventional automated systems are perceived as lacking flexibility. Production lines that incorporate human workers are particularly common within consumer electronics and small appliances. Artificial intelligence (AI) is a possible avenue to achieve smart robotic automation in this context. In this research it is argued that a robust, autonomous object handling process plays a crucial role in future manufacturing systems that incorporate robotics—key to further closing the gap between manual and fully automated production. Novel object grasping is a difficult task, confounded by many factors including object geometry, weight distribution, friction coefficients and deformation characteristics. Sensing and actuation accuracy can also significantly impact manipulation quality. Another challenge is understanding the relationship between these factors, a specific grasping strategy, the robotic arm and the employed end-effector. Manipulation has been a central research topic within robotics for many years. Some works focus on design, i.e. specifying a gripper-object interface such that the effects of imprecise gripper placement and other confounding control-related factors are mitigated. Many universal robotic gripper designs have been considered, including 3-fingered gripper designs, anthropomorphic grippers, granular jamming end-effectors and underactuated mechanisms. While such approaches have maintained some interest, contemporary works predominantly utilise machine learning in conjunction with imaging technologies and generic force-closure end-effectors. Neural networks that utilise supervised and unsupervised learning schemes with an RGB or RGB-D input make up the bulk of publications within this field. Though many solutions have been studied, automatically generating a robust grasp configuration for objects not known a priori, remains an open-ended problem. An element of this issue relates to a lack of objective performance metrics to quantify the effectiveness of a solution—which has traditionally driven the direction of community focus by highlighting gaps in the state-of-the-art. This research employs monocular vision and deep learning to generate—and select from—a set of hypothesis grasps. A significant portion of this research relates to the process by which a final grasp is selected. Grasp synthesis is achieved by sampling the workspace using convolutional neural networks trained to recognise prospective grasp areas. Each potential pose is evaluated by the proposed method in conjunction with other input modalities—such as load-cells and an alternate perspective. To overcome human bias and build upon traditional metrics, scores are established to objectively quantify the quality of an executed grasp trial. Learning frameworks that aim to maximise for these scores are employed in the selection process to improve performance. The proposed methodology and associated metrics are empirically evaluated. A physical prototype system was constructed, employing a Dobot Magician robotic manipulator, vision enclosure, imaging system, conveyor, sensing unit and control system. Over 4,000 trials were conducted utilising 100 objects. Experimentation showed that robotic manipulation quality could be improved by 10.3% when selecting to optimise for the proposed metrics—quantified by a metric related to translational error. Trials further demonstrated a grasp success rate of 99.3% for known objects and 98.9% for objects for which a priori information is unavailable. For unknown objects, this equated to an improvement of approximately 10% relative to other similar methodologies in literature. A 5.3% reduction in grasp rate was observed when removing the metrics as selection criteria for the prototype system. The system operated at approximately 1 Hz when contemporary hardware was employed. Experimentation demonstrated that selecting a grasp pose based on the proposed metrics improved grasp rates by up to 4.6% for known objects and 2.5% for unknown objects—compared to selecting for grasp rate alone. This project was sponsored by the Richard and Mary Earle Technology Trust, the Ken and Elizabeth Powell Bursary and the Massey University Foundation. Without the financial support provided by these entities, it would not have been possible to construct the physical robotic system used for testing and experimentation. This research adds to the field of robotic manipulation, contributing to topics on grasp-induced error analysis, post-grasp error minimisation, grasp synthesis framework design and general grasp synthesis. Three journal publications and one IEEE Xplore paper have been published as a result of this research

    PROFESSIONAL ENGLISH AVIATION ACTIVITIES

    Get PDF
    Навчальний посібник з англійської мови професійного спрямування. Складається з тематичних розділів, що містять базову термінологію, автентичні тексти, комплекс комунікативних лексико-граматичних вправ, передтекстовий термінологічний англо-український вокабуляр та додаткові тексти для самостійного опрацювання. Призначений для студентів вищих авіаційних навчальних закладів

    Mining Technologies Innovative Development

    Get PDF
    The present book covers the main challenges, important for future prospects of subsoils extraction as a public effective and profitable business, as well as technologically advanced industry. In the near future, the mining industry must overcome the problems of structural changes in raw materials demand and raise the productivity up to the level of high-tech industries to maintain the profits. This means the formation of a comprehensive and integral response to such challenges as the need for innovative modernization of mining equipment and an increase in its reliability, the widespread introduction of Industry 4.0 technologies in the activities of mining enterprises, the transition to "green mining" and the improvement of labor safety and avoidance of man-made accidents. The answer to these challenges is impossible without involving a wide range of scientific community in the publication of research results and exchange of views and ideas. To solve the problem, this book combines the works of researchers from the world's leading centers of mining science on the development of mining machines and mechanical systems, surface and underground geotechnology, mineral processing, digital systems in mining, mine ventilation and labor protection, and geo-ecology. A special place among them is given to post-mining technologies research
    corecore