153 research outputs found

    Agent-based models of social behaviour and communication in evacuations:A systematic review

    Get PDF
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models

    Agent-based models of social behaviour and communication in evacuations: A systematic review

    Full text link
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models.Comment: Pre-print submitted to Safety Science special issue following the 2023 Pedestrian and Evacuation Dynamics conferenc

    A Coupled SFM-ASCRIBE Model To Investigate the Influence of Emotions and Collective Behavior in Homogeneous and Heterogeneous Crowds

    Get PDF
    The understanding of crowd behavior dynamics holds immense significance in ensuring public safety across a range of situations, including emergency evacuations and large-scale events. Our research focuses on two primary objectives: investigating the impact of emotions on crowd movement and gaining valuable insights into collective behavior within crowds. To achieve this, we present a coupled model, incorporating an enhanced ASCRIBE model with an agent displacement model. We introduce heterogeneity into our model by incorporating specific mobility laws for different categories of panicked crowds, considering the influence of emotions on both speed and direction. Through numerical simulations, we analyze the model's parameters, observe the behavior of uniform crowds, and explore the collective dynamics within diverse crowds. By conducting comprehensive simulations and analyses, the findings from this study can contribute to the development of more effective crowd management strategies and emergency evacuation protocols

    Panic That Spreads Sociobehavioral Contagion in Pedestrian Evacuations

    Get PDF
    Crowds are a part of everyday public life, from stadiums and arenas to school hallways. Occasionally, pushing within the crowd spontaneously escalates to crushing behavior, resulting in injuries and even death. The rarity and unpredictability of these incidents provides few options to collect data for research on the prediction and prevention of hazardous emergent behaviors in crowds. This study takes a close look at the way states of agitation, such as panic, can spread through crowds. Group composition—mainly family groups composed of members with differing mobility levels—plays an important role in the spread of agitation through the crowd, ultimately affecting the exit density and evacuation clearance time of a simulated venue. This study used an agent-based model of pedestrian movement during the egress of a hypothetical room and adopted an emotional, cognitive, and social framework to explore the transference and dissipation of agitation through a crowd. The preliminary results reveal that average group size in a crowd is a primary contributor to the exit density and evacuation clearance time. The study provides the groundwork on which to build more elaborate models that incorporate sociobehavioral aspects to simulate human movement during panic situations and account for the potential for dangerous behavior to emerge in crowds

    Modeling Human-Robot Interaction in Three Dimensions

    Get PDF
    This dissertation answers the question: Can a small autonomous UAV change a person's movements by emulating animal behaviors? Human-robot interaction (HRI) has generally been limited to engagements with ground robots at human height or shorter, essentially working on the same two dimensional plane, but this ignores potential interactions where the robot may be above the human such as small un- manned aerial vehicles (sUAVs) for crowd control and evacuation or for underwater or space vehicles acting as assistants for divers or astronauts. The dissertation combines two approaches {behavioral robotics and HRI {to create a model of \Comfortable Distance" containing the information about human-human and human-ground robot interactions and extends it to three dimensions. Behavioral robotics guides the ex- amination and transfer of relevant behaviors from animals, most notably mammals, birds, and ying insects, into a computational model that can be programmed in simulation and on a sUAV. The validated model of proxemics in three dimensions makes a fundamental contribution to human-robot interaction. The results also have significant benefit to the public safety community, leading to more effective evacuation and crowd control, and possibly saving lives. Three findings from this experiment were important in regards to sUAVs for evacuation: i) expressions focusing on the person, rather than the area, are good for decreasing time (by 7.5 seconds, p <.0001) and preference (by 17.4 %, p <.0001), ii) personal defense behaviors are best for decreasing time of interaction (by about 4 seconds, p <.004), while site defense behaviors are best for increasing distance of interaction (by about .5 m, p <.003), and iii) Hediger's animal zones may be more applicable than Hall's human social zones when considering interactions with animal behaviors in sUAVs

    A holistic model of emergency evacuations in large, complex, public occupancy buildings

    Get PDF
    Evacuations are crucial for ensuring the safety of building occupants in the event of an emergency. In large, complex, public occupancy buildings (LCPOBs) these procedures are significantly more complex than the simple withdrawal of people from a building. This thesis has developed a novel, holistic, theoretical model of emergency evacuations in LCPOBs inspired by systems safety theory. LCPOBs are integral components of complex socio-technical systems, and therefore the model describes emergency evacuations as control actions initiated in order to return the building from an unsafe state to a safe state where occupants are not at risk of harm. The emergency evacuation process itself is comprised of four aspects - the movement (of building occupants), planning and management, environmental features, and evacuee behaviour. To demonstrate its utility and applicability, the model has been employed to examine various aspects of evacuation procedures in two example LCPOBs - airport terminals, and sports stadiums. The types of emergency events initiating evacuations in these buildings were identified through a novel hazard analysis procedure, which utilised online news articles to create events databases of previous evacuations. Security and terrorism events, false alarms, and fires were found to be the most common cause of evacuations in these buildings. The management of evacuations was explored through model-based systems engineering techniques, which identified the communication methods and responsibilities of staff members managing these events. Social media posts for an active shooting event were analysed using qualitative and machine learning methods to determine their utility for situational awareness. This data source is likely not informative for this purpose, as few posts detail occupant behaviours. Finally, an experimental study on pedestrian dynamics with movement devices was conducted, which determined that walking speeds during evacuations were unaffected by evacuees dragging luggage, but those pushing pushchairs and wheelchairs will walk significantly slower.Open Acces
    corecore