31,663 research outputs found

    Resilient Autonomous Control of Distributed Multi-agent Systems in Contested Environments

    Full text link
    An autonomous and resilient controller is proposed for leader-follower multi-agent systems under uncertainties and cyber-physical attacks. The leader is assumed non-autonomous with a nonzero control input, which allows changing the team behavior or mission in response to environmental changes. A resilient learning-based control protocol is presented to find optimal solutions to the synchronization problem in the presence of attacks and system dynamic uncertainties. An observer-based distributed H_infinity controller is first designed to prevent propagating the effects of attacks on sensors and actuators throughout the network, as well as to attenuate the effect of these attacks on the compromised agent itself. Non-homogeneous game algebraic Riccati equations are derived to solve the H_infinity optimal synchronization problem and off-policy reinforcement learning is utilized to learn their solution without requiring any knowledge of the agent's dynamics. A trust-confidence based distributed control protocol is then proposed to mitigate attacks that hijack the entire node and attacks on communication links. A confidence value is defined for each agent based solely on its local evidence. The proposed resilient reinforcement learning algorithm employs the confidence value of each agent to indicate the trustworthiness of its own information and broadcast it to its neighbors to put weights on the data they receive from it during and after learning. If the confidence value of an agent is low, it employs a trust mechanism to identify compromised agents and remove the data it receives from them from the learning process. Simulation results are provided to show the effectiveness of the proposed approach

    Fine-grained acceleration control for autonomous intersection management using deep reinforcement learning

    Full text link
    Recent advances in combining deep learning and Reinforcement Learning have shown a promising path for designing new control agents that can learn optimal policies for challenging control tasks. These new methods address the main limitations of conventional Reinforcement Learning methods such as customized feature engineering and small action/state space dimension requirements. In this paper, we leverage one of the state-of-the-art Reinforcement Learning methods, known as Trust Region Policy Optimization, to tackle intersection management for autonomous vehicles. We show that using this method, we can perform fine-grained acceleration control of autonomous vehicles in a grid street plan to achieve a global design objective.Comment: Accepted in IEEE Smart World Congress 201

    Trust-Based Fusion of Untrustworthy Information in Crowdsourcing Applications

    No full text
    In this paper, we address the problem of fusing untrustworthy reports provided from a crowd of observers, while simultaneously learning the trustworthiness of individuals. To achieve this, we construct a likelihood model of the userss trustworthiness by scaling the uncertainty of its multiple estimates with trustworthiness parameters. We incorporate our trust model into a fusion method that merges estimates based on the trust parameters and we provide an inference algorithm that jointly computes the fused output and the individual trustworthiness of the users based on the maximum likelihood framework. We apply our algorithm to cell tower localisation using real-world data from the OpenSignal project and we show that it outperforms the state-of-the-art methods in both accuracy, by up to 21%, and consistency, by up to 50% of its predictions. Copyright Ā© 2013, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved

    An efficient and versatile approach to trust and reputation using hierarchical Bayesian modelling

    No full text
    In many dynamic open systems, autonomous agents must interact with one another to achieve their goals. Such agents may be self-interested and, when trusted to perform an action, may betray that trust by not performing the action as required. Due to the scale and dynamism of these systems, agents will often need to interact with other agents with which they have little or no past experience. Each agent must therefore be capable of assessing and identifying reliable interaction partners, even if it has no personal experience with them. To this end, we present HABIT, a Hierarchical And Bayesian Inferred Trust model for assessing how much an agent should trust its peers based on direct and third party information. This model is robust in environments in which third party information is malicious, noisy, or otherwise inaccurate. Although existing approaches claim to achieve this, most rely on heuristics with little theoretical foundation. In contrast, HABIT is based exclusively on principled statistical techniques: it can cope with multiple discrete or continuous aspects of trustee behaviour; it does not restrict agents to using a single shared representation of behaviour; it can improve assessment by using any observed correlation between the behaviour of similar trustees or information sources; and it provides a pragmatic solution to the whitewasher problem (in which unreliable agents assume a new identity to avoid bad reputation). In this paper, we describe the theoretical aspects of HABIT, and present experimental results that demonstrate its ability to predict agent behaviour in both a simulated environment, and one based on data from a real-world webserver domain. In particular, these experiments show that HABIT can predict trustee performance based on multiple representations of behaviour, and is up to twice as accurate as BLADE, an existing state-of-the-art trust model that is both statistically principled and has been previously shown to outperform a number of other probabilistic trust models

    Fuzzy argumentation for trust

    No full text
    In an open Multi-Agent System, the goals of agents acting on behalf of their owners often conflict with each other. Therefore, a personal agent protecting the interest of a single user cannot always rely on them. Consequently, such a personal agent needs to be able to reason about trusting (information or services provided by) other agents. Existing algorithms that perform such reasoning mainly focus on the immediate utility of a trusting decision, but do not provide an explanation of their actions to the user. This may hinder the acceptance of agent-based technologies in sensitive applications where users need to rely on their personal agents. Against this background, we propose a new approach to trust based on argumentation that aims to expose the rationale behind such trusting decisions. Our solution features a separation of opponent modeling and decision making. It uses possibilistic logic to model behavior of opponents, and we propose an extension of the argumentation framework by Amgoud and Prade to use the fuzzy rules within these models for well-supported decisions
    • ā€¦
    corecore