144 research outputs found

    Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    Full text link
    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as to achieve systemwide reliability. More specifically, when the opportunistic users are non-persistent, i.e., a subset of them leave the power market when the real-time price is not acceptable, we obtain closedform solutions to the two-level scheduling problem. For the persistent case, we treat the scheduling problem as a multitimescale Markov decision process. We show that it can be recast, explicitly, as a classic Markov decision process with continuous state and action spaces, the solution to which can be found via standard techniques. We conclude that the proposed multi-scale dispatch and scheduling with real-time pricing can effectively address the volatility and uncertainty of wind generation and energy demand, and has the potential to improve the penetration of renewable energy into smart grids.Comment: Submitted to IEEE Infocom 2011. Contains 10 pages and 4 figures. Replaces the previous arXiv submission (dated Aug-23-2010) with the same titl

    A Data Analytics Framework for Smart Grids: Spatio-temporal Wind Power Analysis and Synchrophasor Data Mining

    Get PDF
    abstract: Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly organized into the following two parts: I) spatio-temporal wind power analysis for wind generation forecast and integration, and II) data mining and information fusion of synchrophasor measurements toward secure power grids. Part I is centered around wind power generation forecast and integration. First, a spatio-temporal analysis approach for short-term wind farm generation forecasting is proposed. Specifically, using extensive measurement data from an actual wind farm, the probability distribution and the level crossing rate of wind farm generation are characterized using tools from graphical learning and time-series analysis. Built on these spatial and temporal characterizations, finite state Markov chain models are developed, and a point forecast of wind farm generation is derived using the Markov chains. Then, multi-timescale scheduling and dispatch with stochastic wind generation and opportunistic demand response is investigated. Part II focuses on incorporating the emerging synchrophasor technology into the security assessment and the post-disturbance fault diagnosis of power systems. First, a data-mining framework is developed for on-line dynamic security assessment by using adaptive ensemble decision tree learning of real-time synchrophasor measurements. Under this framework, novel on-line dynamic security assessment schemes are devised, aiming to handle various factors (including variations of operating conditions, forced system topology change, and loss of critical synchrophasor measurements) that can have significant impact on the performance of conventional data-mining based on-line DSA schemes. Then, in the context of post-disturbance analysis, fault detection and localization of line outage is investigated using a dependency graph approach. It is shown that a dependency graph for voltage phase angles can be built according to the interconnection structure of power system, and line outage events can be detected and localized through networked data fusion of the synchrophasor measurements collected from multiple locations of power grids. Along a more practical avenue, a decentralized networked data fusion scheme is proposed for efficient fault detection and localization.Dissertation/ThesisPh.D. Electrical Engineering 201

    An Approximately Optimal Algorithm for Scheduling Phasor Data Transmissions in Smart Grid Networks

    Full text link
    In this paper, we devise a scheduling algorithm for ordering transmission of synchrophasor data from the substation to the control center in as short a time frame as possible, within the realtime hierarchical communications infrastructure in the electric grid. The problem is cast in the framework of the classic job scheduling with precedence constraints. The optimization setup comprises the number of phasor measurement units (PMUs) to be installed on the grid, a weight associated with each PMU, processing time at the control center for the PMUs, and precedence constraints between the PMUs. The solution to the PMU placement problem yields the optimum number of PMUs to be installed on the grid, while the processing times are picked uniformly at random from a predefined set. The weight associated with each PMU and the precedence constraints are both assumed known. The scheduling problem is provably NP-hard, so we resort to approximation algorithms which provide solutions that are suboptimal yet possessing polynomial time complexity. A lower bound on the optimal schedule is derived using branch and bound techniques, and its performance evaluated using standard IEEE test bus systems. The scheduling policy is power grid-centric, since it takes into account the electrical properties of the network under consideration.Comment: 8 pages, published in IEEE Transactions on Smart Grid, October 201

    The value of schedule update frequency on distributed energy storage performance in renewable energy integration

    No full text
    International audienceThis paper describes preliminary findings of research on the use of Distributed Energy Storage devices for Renewable Energy integration. The primary objective is to describe the effect of different storage scheduling strategies, and namely the benefits from intraday intraday scheduling on the storage performance in renewable energy integration. Optimal schedules of Distributed Energy Storage devices are based on forecasts of Renewable Energy production, local consumption and prices, along with other criteria. These forecasts tend to have a higher uncertainty for higher time horizons, resulting in losses due to errors and to the underutilization of the assets. The use of frequent schedules updates can reduce part of these drawbacks and this paper aims at quantifying this reduction. The importance of the quantification of the benefits arising from different rescheduling frequencies lies in its influence on the ICT infrastructure necessary to implement it and its cost

    A Widespread Review of Smart Grids Towards Smart Cities

    Get PDF
    © 2019 by the authorsNowadays, the importance of energy management and optimization by means of smart devices has arisen as an important issue. On the other hand, the intelligent application of smart devices stands as a key element in establishing smart cities, which have been suggested as the solution to complicated future urbanization difficulties in coming years. Considering the scarcity of traditional fossil fuels in the near future, besides their ecological problems the new smart grids have demonstrated the potential to merge the non-renewable and renewable energy resources into each other leading to the reduction of environmental problems and optimizing operating costs. The current paper clarifies the importance of smart grids in launching smart cities by reviewing the advancement of micro/nano grids, applications of renewable energies, energy-storage technologies, smart water grids in smart cities. Additionally a review of the major European smart city projects has been carried out. These will offer a wider vision for researchers in the operation, monitoring, control and audit of smart-grid systems.publishedVersio

    Managing power system congestion and residential demand response considering uncertainty

    Get PDF
    Electric power grids are becoming increasingly stressed due to political and environmental difficulties in upgrading transmission capacity. This challenge receives even more interest with the paradigm change of increasing renewable energy sources and demand response (DR) programs. Among DR technologies, existing DR programs are primarily designed for industrial and commercial customers. However, household energy consumption accounts for 38% of total electricity consumption in the U.S., suggesting a significant missed opportunity. This dissertation presents an in-depth study to investigate managing power system congestion and residential DR program under uncertainty.First, an interval optimization model is presented for available transfer capability (ATC) evaluation under uncertainties. The conventional approaches of ATC assessment include deterministic and probabilistic methods. However, the proposed interval optimization model can effectively reduce the accuracy requirements on the renewable forecasting, and lead to acceptable interval results by mitigating the impacts of wind forecasting and modeling errors. Second, a distributed and scalable residential DR program is proposed for reducing the peak load at the utility level. The proposed control approach has the following features: 1) it has a distributed control scheme with limited data exchange among agents to ensure scalability and data privacy, and 2) it reduces the utility peak load and customers’ electricity bills while considering household temperature dynamics and network flow.Third, the impacts of weather and customers’ behavior uncertainties on residential DR are also studied in this dissertation. A new stochastic programming-alternating direction method of multipliers (SP-ADMM) algorithm is proposed to solve problems related to weather and uncertain customer behavior. The case study suggests that the performance of residential DR programs can be further improved by considering these stochastic parameters.Finally, a deep deterministic policy gradient-based (DDPG-based) HVAC control strategy is presented for residential DR programs. Simulation results demonstrate that the DDPG-based approach can considerably reduce system peak load, and it requires much less input information than the model-based methods. Also, it only takes each agent less than 3 seconds to make HVAC control actions. Therefore, the proposed approach is applicable to online controls or the cases where accurate building models or weather forecast information are not available
    • …
    corecore