9,606 research outputs found

    Microgrids

    Get PDF
    Integration of renewable energy sources in the electrical power system is key for enabling the decarbonization of that system. The connection of renewable generation to the electrical system is being performed in a centralized form (large renewable power plants like wind or solar power plants connected at the transmission system) and in a decentralized manner (through the connection of dispersed generation connected at the distribution system). The connection of renewable generation at distribution levels, together with other generating sources as well as energy storage systems (the so-called DER, Distributed Energy Resources) close to consumption sites, is promoting the development of microgrids: DER installations that have the capability to operate grid connected and grid isolated. The uncertainty and variability of the renewable energy sources that integrate microgrids, as well as the need for coordination with other energy sources, pose challenges in the operation, protection, control, and planning of microgrids. The five selected papers published in this Special Issue propose solutions to address these challenges.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.1 - Per a 2030, garantir l’accés universal a serveis d’energia assequibles, confiables i modernsObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaPostprint (published version

    Offshore Wind Farms

    Get PDF
    The coastal zone is the host to many human activities, which have significantly increased in the last decades. However, sea level rise and more frequent storm events severely affect beaches and coastal structures, with negative consequences and dramatic impacts on coastal communities. These aspects add to typical coastal problems, like flooding and beach erosion, which already leading to large economic losses and human fatalities. Modeling is thus fundamental for an exhaustive understanding of the nearshore region in the present and future environment. Innovative tools and technologies may help to better understand coastal processes in terms of hydrodynamics, sediment transport, bed morphology, and their interaction with coastal structures. This book collects several contributions focusing on nearshore dynamics, and span among several time and spatial scales using both physical and numerical approaches. The aim is to describe the most recent advances in coastal dynamics

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Optimal operation strategies of multi-energy systems integrated with liquid air energy storage using information gap decision theory

    Get PDF
    In this paper, a framework of multi-energy system (MES) integrating with a liquid air energy storage (LAES) system was proposed. LAES, where liquid air works as an energy storage media, is a powerful and eco-friendly technology for storing renewable energy resources and reducing grid curtailment. Considering the characteristics of LAES (i.e. cold and heat circulation), the incorporation of LAES system into the Combined Cooling, Heating and Power system can achieve integrated use of energy and effectively save energy. Moreover, the prices of electricity will affect the overall cost of the MES. In other words, the decision-makers of the MES need to consider the uncertainty of electricity prices when making power dispatching decisions. To model the uncertainty of electricity prices, the information gap decision theory method was used to study power dispatching strategies of the MES. Three different strategies were proposed, including risk-neutral, risk-averse and risk-taker. In addition, demand response algorithms were used to study load transfer strategies. The results show that the demand responses of the three strategies are effective in terms of load transfer and cost saving. The total operation cost in the risk-neutral strategy with demand response can be 6.82% less than that without demand response; In the risk-taker strategy with demand response, the allowable grid electricity price is reduced by 25.24% when the opportunity cost drops by $8,000, and 23.32% without demand response. With additional robustness cost, the acceptable price change ratio using demand response is 21.91% in the risk-averse strategy, and 20.04% without demand response

    Integration of Renewables in Power Systems by Multi-Energy System Interaction

    Get PDF
    This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated

    Smart Energy and Intelligent Transportation Systems

    Get PDF
    With the Internet of Things and various information and communication technologies, a city can manage its assets in a smarter way, constituting the urban development vision of a smart city. This facilitates a more efficient use of physical infrastructure and encourages citizen participation. Smart energy and smart mobility are among the key aspects of the smart city, in which the electric vehicle (EV) is believed to take a key role. EVs are powered by various energy sources or the electricity grid. With proper scheduling, a large fleet of EVs can be charged from charging stations and parking infrastructures. Although the battery capacity of a single EV is small, an aggregation of EVs can perform as a significant power source or load, constituting a vehicle-to-grid (V2G) system. Besides acquiring energy from the grid, in V2G, EVs can also support the grid by providing various demand response and auxiliary services. Thanks to this, we can reduce our reliance on fossil fuels and utilize the renewable energy more effectively. This Special Issue “Smart Energy and Intelligent Transportation Systems” addresses existing knowledge gaps and advances smart energy and mobility. It consists of five peer-reviewed papers that cover a range of subjects and applications related to smart energy and transportation

    Wind Power Integration into Power Systems: Stability and Control Aspects

    Get PDF
    Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to clean and low-carbon renewable energy sources. Complex stability issues, such as frequency, voltage, and oscillatory instability, are frequently reported in the power grids of many countries and regions (e.g., Germany, Denmark, Ireland, and South Australia) due to the substantially increased wind power generation. Control techniques, such as virtual/emulated inertia and damping controls, could be developed to address these stability issues, and additional devices, such as energy storage systems, can also be deployed to mitigate the adverse impact of high wind power generation on various system stability problems. Moreover, other wind power integration aspects, such as capacity planning and the short- and long-term forecasting of wind power generation, also require careful attention to ensure grid security and reliability. This book includes fourteen novel research articles published in this Energies Special Issue on Wind Power Integration into Power Systems: Stability and Control Aspects, with topics ranging from stability and control to system capacity planning and forecasting
    • …
    corecore