26,864 research outputs found

    Cooperative localization for mobile agents: a recursive decentralized algorithm based on Kalman filter decoupling

    Full text link
    We consider cooperative localization technique for mobile agents with communication and computation capabilities. We start by provide and overview of different decentralization strategies in the literature, with special focus on how these algorithms maintain an account of intrinsic correlations between state estimate of team members. Then, we present a novel decentralized cooperative localization algorithm that is a decentralized implementation of a centralized Extended Kalman Filter for cooperative localization. In this algorithm, instead of propagating cross-covariance terms, each agent propagates new intermediate local variables that can be used in an update stage to create the required propagated cross-covariance terms. Whenever there is a relative measurement in the network, the algorithm declares the agent making this measurement as the interim master. By acquiring information from the interim landmark, the agent the relative measurement is taken from, the interim master can calculate and broadcast a set of intermediate variables which each robot can then use to update its estimates to match that of a centralized Extended Kalman Filter for cooperative localization. Once an update is done, no further communication is needed until the next relative measurement

    VANET addressing scheme incorporating geographical information in standard IPv6 header

    Get PDF

    Reliable machine-to-machine multicast services with multi-radio cooperative retransmissions

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11036-015-0575-6The 3GPP is working towards the definition of service requirements and technical solutions to provide support for energy-efficient Machine Type Communications (MTC) in the forthcoming generations of cellular networks. One of the envisioned solutions consists in applying group management policies to clusters of devices in order to reduce control signaling and improve upon energy efficiency, e.g., multicast Over-The-Air (OTA) firmware updates. In this paper, a Multi-Radio Cooperative Retransmission Scheme is proposed to efficiently carry out multicast transmissions in MTC networks, reducing both control signaling and improving energy-efficiency. The proposal can be executed in networks composed by devices equipped with multiple radio interfaces which enable them to connect to both a cellular access network, e.g., LTE, and a short-range MTC area network, e.g., Low-Power Wi-Fi or ZigBee, as foreseen by the MTC architecture defined by ETSI. The main idea is to carry out retransmissions over the M2M area network upon error in the main cellular link. This yields a reduction in both the traffic load over the cellular link and the energy consumption of the devices. Computer-based simulations with ns-3 have been conducted to analyze the performance of the proposed scheme in terms of energy consumption and assess its superior performance compared to non-cooperative retransmission schemes, thus validating its suitability for energy-constrained MTC applications.Peer ReviewedPostprint (author's final draft
    • …
    corecore