262 research outputs found

    Current Studies and Applications of Krill Herd and Gravitational Search Algorithms in Healthcare

    Full text link
    Nature-Inspired Computing or NIC for short is a relatively young field that tries to discover fresh methods of computing by researching how natural phenomena function to find solutions to complicated issues in many contexts. As a consequence of this, ground-breaking research has been conducted in a variety of domains, including synthetic immune functions, neural networks, the intelligence of swarm, as well as computing of evolutionary. In the domains of biology, physics, engineering, economics, and management, NIC techniques are used. In real-world classification, optimization, forecasting, and clustering, as well as engineering and science issues, meta-heuristics algorithms are successful, efficient, and resilient. There are two active NIC patterns: the gravitational search algorithm and the Krill herd algorithm. The study on using the Krill Herd Algorithm (KH) and the Gravitational Search Algorithm (GSA) in medicine and healthcare is given a worldwide and historical review in this publication. Comprehensive surveys have been conducted on some other nature-inspired algorithms, including KH and GSA. The various versions of the KH and GSA algorithms and their applications in healthcare are thoroughly reviewed in the present article. Nonetheless, no survey research on KH and GSA in the healthcare field has been undertaken. As a result, this work conducts a thorough review of KH and GSA to assist researchers in using them in diverse domains or hybridizing them with other popular algorithms. It also provides an in-depth examination of the KH and GSA in terms of application, modification, and hybridization. It is important to note that the goal of the study is to offer a viewpoint on GSA with KH, particularly for academics interested in investigating the capabilities and performance of the algorithm in the healthcare and medical domains.Comment: 35 page

    Novel DV-hop Method Based on Krill Swarm Algorithm Used for Wireless Sensor Network Localization

    Get PDF
    Wireless sensor network (WSN) is self-organizing network; it consists of a large number of sensor nodes with perception, calculation ability and communication ability. As we all know, the floor, walls or people moving has an effect on indoor localization, so it will result in multi-path phenomena and decrease signal strength, also the received signal strength indicator (RSSI) is unable to gain higher accuracy of positioning. When using multilateral measurement method to calculate the unknown node coordinates, it will generate big error in range-free distance vector-hop (DV-hop) localization algorithm of WSN. In order to improve the WSN positioning accuracy in indoor condition, more reasonable distribute network resources, in this paper, we firstly propose krill swarm algorithm used for WSN localization. First, we detailed analyze the multilateral measurement method in DV-hop localization algorithm. The position problem can be transformed into a global optimization problem. Then, we adequately utilize the advantage of calculating optimization problem. We apply the krill swarm algorithm into the stage of estimating unknown node coordinates in DV-hop algorithm to realize localization. Finally, the simulation experience results show that the localization with krill swarm algorithm has an obviously higher positioning precision and accuracy stability with different anchor node proportion and nodes. We also make comparison with DV-hop algorithm and the newest localization algorithm

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Lévy-Flight Krill Herd Algorithm

    Get PDF
    To improve the performance of the krill herd (KH) algorithm, in this paper, a Lévy-flight krill herd (LKH) algorithm is proposed for solving optimization tasks within limited computing time. The improvement includes the addition of a new local Lévy-flight (LLF) operator during the process when updating krill in order to improve its efficiency and reliability coping with global numerical optimization problems. The LLF operator encourages the exploitation and makes the krill individuals search the space carefully at the end of the search. The elitism scheme is also applied to keep the best krill during the process when updating the krill. Fourteen standard benchmark functions are used to verify the effects of these improvements and it is illustrated that, in most cases, the performance of this novel metaheuristic LKH method is superior to, or at least highly competitive with, the standard KH and other population-based optimization methods. Especially, this new method can accelerate the global convergence speed to the true global optimum while preserving the main feature of the basic KH

    Lightning search algorithm: a comprehensive survey

    Full text link
    The lightning search algorithm (LSA) is a novel meta-heuristic optimization method, which is proposed in 2015 to solve constraint optimization problems. This paper presents a comprehensive survey of the applications, variants, and results of the so-called LSA. In LSA, the best-obtained solution is defined to improve the effectiveness of the fitness function through the optimization process by finding the minimum or maximum costs to solve a specific problem. Meta-heuristics have grown the focus of researches in the optimization domain, because of the foundation of decision-making and assessment in addressing various optimization problems. A review of LSA variants is displayed in this paper, such as the basic, binary, modification, hybridization, improved, and others. Moreover, the classes of the LSA’s applications include the benchmark functions, machine learning applications, network applications, engineering applications, and others. Finally, the results of the LSA is compared with other optimization algorithms published in the literature. Presenting a survey and reviewing the LSA applications is the chief aim of this survey paper

    A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks

    Get PDF
    This paper deals with the problem of the optimal placement and sizing of distributed generators (DGs) in alternating current (AC) distribution networks by proposing a hybrid master–slave optimization procedure. In the master stage, the discrete version of the sine–cosine algorithm (SCA) determines the optimal location of the DGs, i.e., the nodes where these must be located, by using an integer codification. In the slave stage, the problem of the optimal sizing of the DGs is solved through the implementation of the second-order cone programming (SOCP) equivalent model to obtain solutions for the resulting optimal power flow problem. As the main advantage, the proposed approach allows converting the original mixed-integer nonlinear programming formulation into a mixed-integer SOCP equivalent. That is, each combination of nodes provided by the master level SCA algorithm to locate distributed generators brings an optimal solution in terms of its sizing; since SOCP is a convex optimization model that ensures the global optimum finding. Numerical validations of the proposed hybrid SCA-SOCP to optimal placement and sizing of DGs in AC distribution networks show its capacity to find global optimal solutions. Some classical distribution networks (33 and 69 nodes) were tested, and some comparisons were made using reported results from literature. In addition, simulation cases with unity and variable power factor are made, including the possibility of locating photovoltaic sources considering daily load and generation curves. All the simulations were carried out in the MATLAB software using the CVX optimization tool

    Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring

    Get PDF
    In recent years, data mining technology has been employed to solve various Structural Health Monitoring (SHM) problems as a comprehensive strategy because of its computational capability. Optimization is one the most important functions in Data mining. In an engineering optimization problem, it is not easy to find an exact solution. In this regard, evolutionary techniques have been applied as a part of procedure of achieving the exact solution. Therefore, various metaheuristic algorithms have been developed to solve a variety of engineering optimization problems in SHM. This study presents the most applicable as well as effective evolutionary techniques used in structural damage identification. To this end, a brief overview of metaheuristic techniques is discussed in this paper. Then the most applicable optimization-based algorithms in structural damage identification are presented, i.e. Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization (ACO). Some related examples are also detailed in order to indicate the efficiency of these algorithms
    corecore