415 research outputs found

    Robust Multi-Object Tracking: A Labeled Random Finite Set Approach

    Get PDF
    The labeled random finite set based generalized multi-Bernoulli filter is a tractable analytic solution for the multi-object tracking problem. The robustness of this filter is dependent on certain knowledge regarding the multi-object system being available to the filter. This dissertation presents techniques for robust tracking, constructed upon the labeled random finite set framework, where complete information regarding the system is unavailable

    Joint probabilistic data association filter with unknown detection probability and clutter rate

    Get PDF
    This paper proposes a novel joint probabilistic data association (JPDA) filter for joint target tracking and track maintenance under unknown detection probability and clutter rate. The proposed algorithm consists of two main parts: (1) the standard JPDA filter with a Poisson point process birth model for multi-object state estimation; and (2) a multi-Bernoulli filter for detection probability and clutter rate estimation. The performance of the proposed JPDA filter is evaluated through empirical tests. The results of the empirical tests show that the proposed JPDA filter has comparable performance with ideal JPDA that is assumed to have perfect knowledge of detection probability and clutter rate. Therefore, the algorithm developed is practical and could be implemented in a wide range of application

    Spatiotemporal Constraints for Sets of Trajectories with Applications to PMBM Densities

    Full text link
    In this paper we introduce spatiotemporal constraints for trajectories, i.e., restrictions that the trajectory must be in some part of the state space (spatial constraint) at some point in time (temporal constraint). Spatiotemporal contraints on trajectories can be used to answer a range of important questions, including, e.g., "where did the person that were in area A at time t, go afterwards?". We discuss how multiple constraints can be combined into sets of constraints, and we then apply sets of constraints to set of trajectories densities, specifically Poisson Multi-Bernoulli Mixture (PMBM) densities. For Poisson target birth, the exact posterior density is PMBM for both point targets and extended targets. In the paper we show that if the unconstrained set of trajectories density is PMBM, then the constrained density is also PMBM. Examples of constrained trajectory densities motivate and illustrate the key results

    Transferability of Convolutional Neural Networks in Stationary Learning Tasks

    Full text link
    Recent advances in hardware and big data acquisition have accelerated the development of deep learning techniques. For an extended period of time, increasing the model complexity has led to performance improvements for various tasks. However, this trend is becoming unsustainable and there is a need for alternative, computationally lighter methods. In this paper, we introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems. To accomplish this we investigate the properties of CNNs for tasks where the underlying signals are stationary. We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining. This claim is supported by our theoretical analysis, which provides a bound on the performance degradation. Additionally, we conduct thorough experimental analysis on two tasks: multi-target tracking and mobile infrastructure on demand. Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten. Thus, CNN architectures provide solutions to these problems at previously computationally intractable scales.Comment: 14 pages, 7 figures, for associated code see https://github.com/damowerko/mt

    Linear Complexity Gibbs Sampling for Generalized Labeled Multi-Bernoulli Filtering

    Full text link
    Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a host of multi-object system applications analogous to Gaussians in single-object filtering. However, computing the GLMB filtering density requires solving NP-hard problems. To alleviate this computational bottleneck, we develop a linear complexity Gibbs sampling framework for GLMB density computation. Specifically, we propose a tempered Gibbs sampler that exploits the structure of the GLMB filtering density to achieve an O(T(P+M))\mathcal{O}(T(P+M)) complexity, where TT is the number of iterations of the algorithm, PP and MM are the number hypothesized objects and measurements. This innovation enables an O(T(P+M+log(T))+PM)\mathcal{O}(T(P+M+\log(T))+PM) complexity implementation of the GLMB filter. Convergence of the proposed Gibbs sampler is established and numerical studies are presented to validate the proposed GLMB filter implementation

    A Gaussian inverse Wishart PHD Filter using Stochastic Partitioning for Multiple Extended Object Tracking

    Get PDF
    This thesis deals with the object tracking problem of multiple extended objects. For instance, this tracking problem occurs when a car with sensors drives on the road and detects multiple other cars in front of it. When the setup between the senor and the other cars is in a such way that multiple measurements are created by each single car, the cars are called extended objects. This can occur in real world scenarios, mainly with the use of high resolution sensors in near field applications. Such a near field scenario leads a single object to occupy several resolution cells of the sensor so that multiple measurements are generated per scan. The measurements are additionally superimposed by the sensor’s noise. Beside the object generated measurements, there occur false alarms, which are not caused by any object and sometimes in a sensor scan, single objects could be missed so that they not generate any measurements. To handle these scenarios, object tracking filters are needed to process the sensor measurements in order to obtain a stable and accurate estimate of the objects in each sensor scan. In this thesis, the scope is to implement such a tracking filter that handles the extended objects, i.e. the filter estimates their positions and extents. In context of this, the topic of measurement partitioning occurs, which is a pre-processing of the measurement data. With the use of partitioning, the measurements that are likely generated by one object are put into one cluster, also called cell. Then, the obtained cells are processed by the tracking filter for the estimation process. The partitioning of measurement data is a crucial part for the performance of tracking filter because insufficient partitioning leads to bad tracking performance, i.e. inaccurate object estimates. In this thesis, a Gaussian inverse Wishart Probability Hypothesis Density (GIW-PHD) filter was implemented to handle the multiple extended object tracking problem. Within this filter framework, the number of objects are modelled as Random Finite Sets (RFSs) and the objects’ extent as random matrices (RM). The partitioning methods that are used to cluster the measurement data are existing ones as well as a new approach that is based on likelihood sampling methods. The applied classical heuristic methods are Distance Partitioning (DP) and Sub-Partitioning (SP), whereas the proposed likelihood-based approach is called Stochastic Partitioning (StP). The latter was developed in this thesis based on the Stochastic Optimisation approach by Granström et al. An implementation, including the StP method and its integration into the filter framework, is provided within this thesis. The implementations, using the different partitioning methods, were tested on simulated random multi-object scenarios and in a fixed parallel tracking scenario using Monte Carlo methods. Further, a runtime analysis was done to provide an insight into the computational effort using the different partitioning methods. It emphasized, that the StP method outperforms the classical partitioning methods in scenarios, where the objects move spatially close. The filter using StP performs more stable and with more accurate estimates. However, this advantage is associated with a higher computational effort compared to the classical heuristic partitioning methods
    corecore