4,038 research outputs found

    A new approach for transport network design and optimization

    Get PDF
    The solution of the transportation network optimization problem actually requires, in most cases, very intricate and powerful computer resources, so that it is not feasible to use classical algorithms. One promising way is to use stochastic search techniques. In this context, Genetic Algorithms (GAs) seem to be - among all the available methodologies- one of the most efficient methods able to approach transport network design and optimization. Particularly, this paper will focus the attention on the possibility of modelling and optimizing Public Bus Networks by means of GAs. In the proposed algorithm, the specific class of Cumulative GAs(CGAs) will be used for solving the first level of the network optimization problem, while a classical assignment model ,or alternatively a neural network approach ,will be adopted for the Fitness Function(FF) evaluation. CGAs will then be utilized in order to generate new populations of networks, which will be evaluated by means of a suitable software package. For each new solution some indicators will be calculated .A unique FF will be finally evaluated by means of a multicriteria method. Altough the research is still in a preliminary stage, the emerging first results concerning numerical cases show very good perspectives for this new approach. A test in real cases will also follow.

    Online Predictive Optimization Framework for Stochastic Demand-Responsive Transit Services

    Full text link
    This study develops an online predictive optimization framework for dynamically operating a transit service in an area of crowd movements. The proposed framework integrates demand prediction and supply optimization to periodically redesign the service routes based on recently observed demand. To predict demand for the service, we use Quantile Regression to estimate the marginal distribution of movement counts between each pair of serviced locations. The framework then combines these marginals into a joint demand distribution by constructing a Gaussian copula, which captures the structure of correlation between the marginals. For supply optimization, we devise a linear programming model, which simultaneously determines the route structure and the service frequency according to the predicted demand. Importantly, our framework both preserves the uncertainty structure of future demand and leverages this for robust route optimization, while keeping both components decoupled. We evaluate our framework using a real-world case study of autonomous mobility in a university campus in Denmark. The results show that our framework often obtains the ground truth optimal solution, and can outperform conventional methods for route optimization, which do not leverage full predictive distributions.Comment: 34 pages, 12 figures, 5 table

    Urban Transit Network Design Problems: A Review of Population-based Metaheuristics

    Get PDF
    The urban transit network design problem (UTNDP) involves the development of a transit route set and associated schedules for an urban public transit system. The design of efficient public transit systems is widely considered as a viable option for the economic, social, and physical structure of an urban setting. This paper reviews four well-known population-based metaheuristics that have been employed and deemed potentially viable for tackling the UTNDP. The aim is to give a thorough review of the algorithms and identify the gaps for future research directions

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Data-Driven Optimization Models for Feeder Bus Network Design

    Get PDF
    Urbanization is not a modern phenomenon. However, it is worthwhile to note that the world urban population growth curve has up till recently followed a quadratic-hyperbolic pattern (Korotayey and Khaltourina, 2006). As cities become larger and their population expand, large and growing metropolises have to face the enormous traffic demand. To alleviate the increasing traffic congestion, public transit has been considered as the ideal solution to such troubles and problems restricting urban development. The metro is a type of efficient, dependable and high-capacity public transport adapted in metropolises worldwide. At the same time, the residents from crowded cities migrated to the suburban since 1950s. Such sub-urbanization brings more decentralized travel demands and has challenged to the public transit system. Even the metro lines are extended from inner city to outer city, the commuters living in suburban still have difficulty to get to the rail station due to the limited transportation resources. It is becoming inevitable to develop the regional transit network such as feeder bus that picks up the passengers from various locations and transfer them to the metro stations or transportation hubs. The feeder bus will greatly improve the efficiency of metro stations whose service area in the suburban area is usually limited. Therefore, how to develop a well-integrated feeder system is becoming an important task to planners and engineers. Realizing the above critical issues, the dissertation focus on the feeder bus network design problem (FBNDP) and contributes to three main parts: 1. Develop a data-mining strategy to retrieve OD pair from the large scale of the cellphone data. The OD pairs are able to present the users’ daily behaver including the location of residence, workplace with the timestamp of each trip. The spatial distribution of urban rail transit user demand from the OD pair will help to support the establishment and optimization of the feeder bus network. The dissertation details the procedure of data acquisition and utilization. The machine leaning is applied to predict the travel demand in the future. 2. Present a mathematical model to design the appropriate service area and routing plans for a flexible feeder transit. The proposed model features in utilizing the real-world data input and simultaneously selecting bus stops and designing the route from those targeted stops to urban rail stops. 3. Propose an improved feeder bus network design model to provide precise service to the commuters. Considering the commuters are time-sensitive during the peak hours, the time-windows of each demand is taken in to account when generating the routes and the schedule of feeder bus system. The model aims to pick up the demand within the time-windows of the commuters’ departure time and drop off them within the reasonable time. The commuters will benefit from the shorter waiting time, shorter walking distance and efficient transfer timetable

    Differential evolution for urban transit routing problem

    Get PDF
    The urban transit routing problem (UTRP) involves the construction of route sets on existing road networks to cater for the transit demand efficiently. This is an NP-hard problem, where the generation of candidate route sets can lead to a number of potential routes being discarded on the grounds of infeasibility. This paper presents a new repair mechanism to complement the existing terminal repair and the make-small-change operators in dealing with the infeasibility of the candidate route set. When solving the UTRP, the general aim is to determine a set of transit route networks that achieves a minimum total cost for both the passenger and the operator. With this in mind, we propose a differential evolution (DE) algorithm for solving the UTRP with a specific objective of minimizing the average travel time of all served passengers. Computational experiments are performed on the basis of benchmark Mandl’s Swiss network. Computational results from the proposed repair mechanism are comparable with the existing repair mechanisms. Furthermore, the combined repair mechanisms of all three operators produced very promising results. In addition, the proposed DE algorithm outperformed most of the published results in the literature

    Optimal Alignments for Designing Urban Transport Systems: Application to Seville

    Get PDF
    The achievement of some of the Sustainable Development Goals (SDGs) from the recent 2030 Agenda for Sustainable Development has drawn the attention of many countries towards urban transport networks. Mathematical modeling constitutes an analytical tool for the formal description of a transportation system whereby it facilitates the introduction of variables and the definition of objectives to be optimized. One of the stages of the methodology followed in the design of urban transit systems starts with the determination of corridors to optimize the population covered by the system whilst taking into account the mobility patterns of potential users and the time saved when the public network is used instead of private means of transport. Since the capture of users occurs at stations, it seems reasonable to consider an extensive and homogeneous set of candidate sites evaluated according to the parameters considered (such as pedestrian population captured and destination preferences) and to select subsets of stations so that alignments can take place. The application of optimization procedures that decide the sequence of nodes composing the alignment can produce zigzagging corridors, which are less appropriate for the design of a single line. The main aim of this work is to include a new criterion to avoid the zigzag effect when the alignment is about to be determined. For this purpose, a curvature concept for polygonal lines is introduced, and its performance is analyzed when criteria of maximizing coverage and minimizing curvature are combined in the same design algorithm. The results show the application of the mathematical model presented for a real case in the city of Seville in Spain.Ministerio de Economía y Competitividad MTM2015-67706-

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture
    corecore