226 research outputs found

    DYNAMIC ROUTING WITH CROSS-LAYER ADAPTATIONS FOR MULTI-HOP WIRELESS NETWORKS

    Get PDF
    In recent years there has been a proliferation of research on a number of wireless multi-hop networks that include mobile ad-hoc networks, wireless mesh networks, and wireless sensor networks (WSNs). Routing protocols in such networks are of- ten required to meet design objectives that include a combination of factors such as throughput, delay, energy consumption, network lifetime etc. In addition, many mod- ern wireless networks are equipped with multi-channel radios, where channel selection plays an important role in achieving the same design objectives. Consequently, ad- dressing the routing problem together with cross-layer adaptations such as channel selection is an important issue in such networks. In this work, we study the joint routing and channel selection problem that spans two domains of wireless networks. The first is a cost-effective and scalable wireless-optical access networks which is a combination of high-capacity optical access and unethered wireless access. The joint routing and channel selection problem in this case is addressed under an anycasting paradigm. In addition, we address two other problems in the context of wireless- optical access networks. The first is on optimal gateway placement and network planning for serving a given set of users. And the second is the development of an analytical model to evaluate the performance of the IEEE 802.11 DCF in radio-over- fiber wireless LANs. The second domain involves resource constrained WSNs where we focus on route and channel selection for network lifetime maximization. Here, the problem is further exacerbated by distributed power control, that introduces addi- tional design considerations. Both problems involve cross-layer adaptations that must be solved together with routing. Finally, we present an analytical model for lifetime calculation in multi-channel, asynchronous WSNs under optimal power control

    Design And Implementation Of An Autonomous Wireless Sensor-Based Smart Home

    Get PDF
    The Smart home has gained widespread attentions due to its flexible integration into everyday life. This next generation of green home system transparently unifies various home appliances, smart sensors and wireless communication technologies. It can integrate diversified physical sensed information and control various consumer home devices, with the support of active sensor networks having both sensor and actuator components. Although smart homes are gaining popularity due to their energy saving and better living benefits, there is no standardized design for smart homes. In this thesis, a smart home design is put forward that can classify and predict the state of the home utilizing historical data of the home. A wireless sensor network was setup in a home to gather and send data to a sink node. The collected data was utilized to train and test a classification model achieving high accuracy with Support Vector Machine (SVM). SVM was further utilized as a predictor of future home states. Based on the data collection, classification and prediction models, a system was designed that can learn, run with minimal human supervision and detect anomalies in a home. The aforementioned attributes make the system an asset for senior care scenarios

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF
    • …
    corecore