485 research outputs found

    Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review

    Get PDF
    In nature, aquatic organisms have evolved various attachment systems, and their attachment ability has become a specific and mysterious survival skill for them. Therefore, it is significant to study and use their unique attachment surfaces and outstanding attachment characteristics for reference and develop new attachment equipment with excellent performance. Based on this, in this review, the unique non-smooth surface morphologies of their suction cups are classified and the key roles of these special surface morphologies in the attachment process are introduced in detail. The recent research on the attachment capacity of aquatic suction cups and other related attachment studies are described. Emphatically, the research progress of advanced bionic attachment equipment and technology in recent years, including attachment robots, flexible grasping manipulators, suction cup accessories, micro-suction cup patches, etc., is summarized. Finally, the existing problems and challenges in the field of biomimetic attachment are analyzed, and the focus and direction of biomimetic attachment research in the future are pointed out

    Biologically Inspired Robots

    Get PDF

    Tunable Reversible Dry Adhesion of Elastomeric Post Enabled by Stiffness Tuning of Microfluidic LMPA Thin Film

    Get PDF
    The goal of this study is to investigate the effects and underlying mechanisms of stiffness tuning on tunable reversible dry adhesion of an elastomeric post. This research introduces a novel device constructed out of a soft elastomer, polydemethylsiloxane (PDMS), with micro channels injected with low melting point alloy (LMPA) that can soften by applying a voltage. In contrast to traditional handling devices, such as metallic robot handlers, this soft gripper enables compliant manipulation of delicate fragile objects such as a thin glass slide. In this thesis, the design and fabrication of the elastomeric posts and the effects of three adhesion testing conditions will be presented. The first testing condition provided the baseline adhesion values that would be later referenced to certify adhesion reversibility. The second condition demonstrates the device’s ability to change adhesion forces on the spot, or dynamically. The third condition displays the ability of the device to maintain this adhesion change when activated and deactivated repeatedly. Theoretical Finite Element modeling provides insights indicating a maximum adhesion when varying one critical geometrical parameter, which was later confirmed with experiments. Experimental results prove the device’s capability of dynamically tunable reversible dry adhesion. This novel approach to tunable dry adhesion exhibits the feasibility of soft grippers that would not require complicated systems for activation but instead only need low power and simple circuitry, and thus have potential to function as effective soft gripping devices

    Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces.

    Get PDF
    Many real-world applications for robots-such as long-term aerial and underwater observation, cross-medium operations, and marine life surveys-require robots with the ability to move between the air-water boundary. Here, we describe an aerial-aquatic hitchhiking robot that is self-contained for flying, swimming, and attaching to surfaces in both air and water and that can seamlessly move between the two. We describe this robot's redundant, hydrostatically enhanced hitchhiking device, inspired by the morphology of a remora (Echeneis naucrates) disc, which works in both air and water. As with the biological remora disc, this device has separate lamellar compartments for redundant sealing, which enables the robot to achieve adhesion and hitchhike with only partial disc attachment. The self-contained, rotor-based aerial-aquatic robot, which has passively morphing propellers that unfold in the air and fold underwater, can cross the air-water boundary in 0.35 second. The robot can perform rapid attachment and detachment on challenging surfaces both in air and under water, including curved, rough, incomplete, and biofouling surfaces, and achieve long-duration adhesion with minimal oscillation. We also show that the robot can attach to and hitchhike on moving surfaces. In field tests, we show that the robot can record video in both media and move objects across the air/water boundary in a mountain stream and the ocean. We envision that this study can pave the way for future robots with autonomous biological detection, monitoring, and tracking capabilities in a wide variety of aerial-aquatic environments

    Material selection for the actuator design for a biomimetic rolling robot conducive to miniaturization

    Get PDF
    The purpose of this thesis was to research, select, and test an actuator mechanism for ultimate use on a centimeter scale biomimetic rolling robot. The design of the actuator will allow a rolling motion that closely mimics cellular locomotion in addition to providing a novel motion for other applications. The basis of the design has been completed through previous mechanical design research. The existing robotic mechanism consists of a larger scale spherical body with legs which controllably extend and contract, yielding a trajectory which results in a rolling motion of the body. The previous research also derived a mathematical model of the kinematics of the motion. The current work seeks to improve on the previous work by selecting an actuation mechanism that preserves the biomimetic motion and that allows this device to eventually be utilized at the microscale. Material selection is of critical importance in developing actuation mechanisms at the microscale. Smart materials were extensively researched because of their actuation properties. Based on the strain percentage, power requirement, and force output, it was determined that the preferable actuation material was an electroactive polymer (EAP). Samples of Ionic Polymer-Metal Composite (IPMC), a type of EAP, were then fabricated, purchased, and tested. Test results from this work will enable future actuator designs and configurations to be fabricated with predicted results. This research also provided a basis for further mechanical design of the rolling robot with the incorporation of EAP actuators. Lastly, future work of combining sensors with the design, therefore compounding capabilities, of the rolling robot is discussed

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Bayesian Maps: probabilistic and hierarchical models for mobile robot navigation

    Get PDF
    What is a map? What is its utility? What is a location, a behaviour? What are navigation, localization and prediction for a mobile robot facing a given task ? These questions have neither unique nor straightforward answer to this day, and are still the core of numerous research domains. Robotics, for instance, aim at answering them for creating successful sensori-motor artefacts. Cognitive sciences use these questions as intermediate goals on the road to un- derstanding living beings, their skills, and furthermore, their intelligence. Our study lies between these two domains. We first study classical probabilistic ap- proaches (Markov localization, POMDPs, HMMs, etc.), then some biomimetic approaches (Berthoz, Franz, Kuipers). We analyze their respective advantages and drawbacks in light of a general formalism for robot programming based on bayesian inference (BRP). We propose a new probabilistic formalism for modelling the interaction between a robot and its environment : the Bayesian map. In this framework, defining a map is done by specifying a particular probability distri- bution. Some of the questions above then amount to solving inference problems. We define operators for putting maps together, so that " hierarchies of maps " and incremental development play a central role in our formalism, as in biomimetic approaches. By using the bayesian formalism, we also benefit both from a unified means of dealing with uncertainties, and from clear and rigorous mathematical foundations. Our formalism is illustrated by experiments that have been implemented on a Koala mobile robot
    • …
    corecore