1,498 research outputs found

    Probabilistic Graphical Models for Human Interaction Analysis

    Get PDF
    The objective of this thesis is to develop probabilistic graphical models for analyzing human interaction in meetings based on multimodel cues. We use meeting as a study case of human interactions since research shows that high complexity information is mostly exchanged through face-to-face interactions. Modeling human interaction provides several challenging research issues for the machine learning community. In meetings, each participant is a multimodal data stream. Modeling human interaction involves simultaneous recording and analysis of multiple multimodal streams. These streams may be asynchronous, have different frame rates, exhibit different stationarity properties, and carry complementary (or correlated) information. In this thesis, we developed three probabilistic graphical models for human interaction analysis. The proposed models use the ``probabilistic graphical model'' formalism, a formalism that exploits the conjoined capabilities of graph theory and probability theory to build complex models out of simpler pieces. We first introduce the multi-layer framework, in which the first layer models typical individual activity from low-level audio-visual features, and the second layer models the interactions. The two layers are linked by a set of posterior probability-based features. Next, we describe the team-player influence model, which learns the influence of interacting Markov chains within a team. The team-player influence model has a two-level structure: individual-level and group-level. Individual level models actions of each player, and the group-level models actions of the team as a whole. The influence of each player on the team is jointly learned with the rest of the model parameters in a principled manner using the Expectation-Maximization (EM) algorithm. Finally, we describe the semi-supervised adapted HMMs for unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the application of traditional supervised model-based approaches. We propose a semi-supervised adapted Hidden Markov Model (HMM) framework, in which usual event models are first learned from a large amount of (commonly available) training data, while unusual event models are learned by Bayesian adaptation in an unsupervised manner

    Automatic recognition of multiparty human interactions using dynamic Bayesian networks

    Get PDF
    Relating statistical machine learning approaches to the automatic analysis of multiparty communicative events, such as meetings, is an ambitious research area. We have investigated automatic meeting segmentation both in terms of “Meeting Actions” and “Dialogue Acts”. Dialogue acts model the discourse structure at a fine grained level highlighting individual speaker intentions. Group meeting actions describe the same process at a coarse level, highlighting interactions between different meeting participants and showing overall group intentions. A framework based on probabilistic graphical models such as dynamic Bayesian networks (DBNs) has been investigated for both tasks. Our first set of experiments is concerned with the segmentation and structuring of meetings (recorded using multiple cameras and microphones) into sequences of group meeting actions such as monologue, discussion and presentation. We outline four families of multimodal features based on speaker turns, lexical transcription, prosody, and visual motion that are extracted from the raw audio and video recordings. We relate these lowlevel multimodal features to complex group behaviours proposing a multistreammodelling framework based on dynamic Bayesian networks. Later experiments are concerned with the automatic recognition of Dialogue Acts (DAs) in multiparty conversational speech. We present a joint generative approach based on a switching DBN for DA recognition in which segmentation and classification of DAs are carried out in parallel. This approach models a set of features, related to lexical content and prosody, and incorporates a weighted interpolated factored language model. In conjunction with this joint generative model, we have also investigated the use of a discriminative approach, based on conditional random fields, to perform a reclassification of the segmented DAs. The DBN based approach yielded significant improvements when applied both to the meeting action and the dialogue act recognition task. On both tasks, the DBN framework provided an effective factorisation of the state-space and a flexible infrastructure able to integrate a heterogeneous set of resources such as continuous and discrete multimodal features, and statistical language models. Although our experiments have been principally targeted on multiparty meetings; features, models, and methodologies developed in this thesis can be employed for a wide range of applications. Moreover both group meeting actions and DAs offer valuable insights about the current conversational context providing valuable cues and features for several related research areas such as speaker addressing and focus of attention modelling, automatic speech recognition and understanding, topic and decision detection

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop

    Concept of a Robust & Training-free Probabilistic System for Real-time Intention Analysis in Teams

    Get PDF
    Die Arbeit beschĂ€ftigt sich mit der Analyse von Teamintentionen in Smart Environments (SE). Die fundamentale Aussage der Arbeit ist, dass die Entwicklung und Integration expliziter Modelle von Nutzeraufgaben einen wichtigen Beitrag zur Entwicklung mobiler und ubiquitĂ€rer Softwaresysteme liefern können. Die Arbeit sammelt Beschreibungen von menschlichem Verhalten sowohl in Gruppensituationen als auch Problemlösungssituationen. Sie untersucht, wie SE-Projekte die AktivitĂ€ten eines Nutzers modellieren, und liefert ein Teamintentionsmodell zur Ableitung und Auswahl geplanten TeamaktivitĂ€ten mittels der Beobachtung mehrerer Nutzer durch verrauschte und heterogene Sensoren. Dazu wird ein auf hierarchischen dynamischen Bayes’schen Netzen basierender Ansatz gewĂ€hlt

    Dynamics of disturbed Mexican pine-oak forest a modelling approach

    Get PDF

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022
    • 

    corecore