283 research outputs found

    Anti-pheromone as a tool for better exploration of search space

    Get PDF
    Many animals use chemical substances known as pheromones to induce behavioural changes in other members of the same species. The use of pheromones by ants in particular has lead to the development of a number of computational analogues of ant colony behaviour including Ant Colony Optimisation. Although many animals use a range of pheromones in their communication, ant algorithms have typically focused on the use of just one, a substance that encourages succeeding generations of (artificial) ants to follow the same path as previous generations. Ant algorithms for multi-objective optimisation and those employing multiple colonies have made use of more than one pheromone, but the interactions between these different pheromones are largely simple extensions of single criterion, single colony ant algorithms. This paper investigates an alternative form of interaction between normal pheromone and anti-pheromone. Three variations of Ant Colony System that apply the anti-pheromone concept in different ways are described and tested against benchmark travelling salesman problems. The results indicate that the use of anti-pheromone can lead to improved performance. However, if anti-pheromone is allowed too great an influence on ants' decisions, poorer performance may result

    Applying ACO To Large Scale TSP Instances

    Full text link
    Ant Colony Optimisation (ACO) is a well known metaheuristic that has proven successful at solving Travelling Salesman Problems (TSP). However, ACO suffers from two issues; the first is that the technique has significant memory requirements for storing pheromone levels on edges between cities and second, the iterative probabilistic nature of choosing which city to visit next at every step is computationally expensive. This restricts ACO from solving larger TSP instances. This paper will present a methodology for deploying ACO on larger TSP instances by removing the high memory requirements, exploiting parallel CPU hardware and introducing a significant efficiency saving measure. The approach results in greater accuracy and speed. This enables the proposed ACO approach to tackle TSP instances of up to 200K cities within reasonable timescales using a single CPU. Speedups of as much as 1200 fold are achieved by the technique

    Reactive approach for automating exploration and exploitation in ant colony optimization

    Get PDF
    Ant colony optimization (ACO) algorithms can be used to solve nondeterministic polynomial hard problems. Exploration and exploitation are the main mechanisms in controlling search within the ACO. Reactive search is an alternative technique to maintain the dynamism of the mechanics. However, ACO-based reactive search technique has three (3) problems. First, the memory model to record previous search regions did not completely transfer the neighborhood structures to the next iteration which leads to arbitrary restart and premature local search. Secondly, the exploration indicator is not robust due to the difference of magnitudes in distance matrices for the current population. Thirdly, the parameter control techniques that utilize exploration indicators in their feedback process do not consider the problem of indicator robustness. A reactive ant colony optimization (RACO) algorithm has been proposed to overcome the limitations of the reactive search. RACO consists of three main components. The first component is a reactive max-min ant system algorithm for recording the neighborhood structures. The second component is a statistical machine learning mechanism named ACOustic to produce a robust exploration indicator. The third component is the ACO-based adaptive parameter selection algorithm to solve the parameterization problem which relies on quality, exploration and unified criteria in assigning rewards to promising parameters. The performance of RACO is evaluated on traveling salesman and quadratic assignment problems and compared with eight metaheuristics techniques in terms of success rate, Wilcoxon signed-rank, Chi-square and relative percentage deviation. Experimental results showed that the performance of RACO is superior than the eight (8) metaheuristics techniques which confirmed that RACO can be used as a new direction for solving optimization problems. RACO can be used in providing a dynamic exploration and exploitation mechanism, setting a parameter value which allows an efficient search, describing the amount of exploration an ACO algorithm performs and detecting stagnation situations

    Learning Sensitive Stigmergic Agents for Solving Complex Problems

    Get PDF
    Systems composed of several interacting autonomous agents have a huge potential to efficiently address complex real-world problems. Usually agents communicate by directly exchanging information and knowledge about the environment. The aim of the paper is to develop a new computational model that endows agents with a supplementary interaction/search mechanism of stigmergic nature. Multi-agent systems can therefore become powerful techniques for addressing NP-hard combinatorial optimization problems. In the proposed approach, agents are able to indirectly communicate by producing and being influenced by pheromone trails. Each stigmergic agent is characterized by a certain level of sensitivity to the pheromone trails. The non-uniform pheromone sensitivity allows various types of reactions to a changing environment. For efficient search diversification and intensification, agents can learn to modify their sensitivity level according to environment characteristics and previous experience. The resulting system for solving complex problems is called Learning Sensitive Agent System (LSAS). The proposed LSAS model is used for solving several NP-hard problems such as the Asymmetric and Generalized Traveling Salesman Problems. Numerical experiments indicate the robustness and the potential of the new metaheuristic

    Scaling Ant Colony Optimization with Hierarchical Reinforcement Learning Partitioning

    Get PDF
    This research merges the hierarchical reinforcement learning (HRL) domain and the ant colony optimization (ACO) domain. The merger produces a HRL ACO algorithm capable of generating solutions for both domains. This research also provides two specific implementations of the new algorithm: the first a modification to Dietterich\u27s MAXQ-Q HRL algorithm, the second a hierarchical ACO algorithm. These implementations generate faster results, with little to no significant change in the quality of solutions for the tested problem domains. The application of ACO to the MAXQ-Q algorithm replaces the reinforcement learning, Q-learning and SARSA, with the modified ant colony optimization method, Ant-Q. This algorithm, MAXQ-AntQ, converges to solutions not significantly different from MAXQ-Q in 88% of the time. This research then transfers HRL techniques to the ACO domain and traveling salesman problem (TSP). To apply HRL to ACO, a hierarchy must be created for the TSP. A data clustering algorithm creates these subtasks, with an ACO algorithm to solve the individual and complete problems. This research tests two clustering algorithms, k-means and G-means. The results demonstrate the algorithm with data clustering produces solutions 85-95% faster but with 5-10% decrease in solution quality

    Parallelization of Ant Colony Optimization via Area of Expertise Learning

    Get PDF
    Ant colony optimization algorithms have long been touted as providing an effective and efficient means of generating high quality solutions to NP-hard optimization problems. Unfortunately, while the structure of the algorithm is easy to parallelize, the nature and amount of communication required for parallel execution has meant that parallel implementations developed suffer from decreased solution quality, slower runtime performance, or both. This thesis explores a new strategy for ant colony parallelization that involves Area of Expertise (AOE) learning. The AOE concept is based on the idea that individual agents tend to gain knowledge of different areas of the search space when left to their own devices. After developing a sense of their own expertness on a portion of the problem domain, agents share information and incorporate knowledge from other agents without having to experience it first-hand. This thesis shows that when incorporated within parallel ACO and applied to multi-objective environments such as a gridworld, the use of AOE learning can be an effective and efficient means of coordinating the efforts of multiple ant colony agents working in tandem, resulting in increased performance. Based on the success of the AOE/ACO combination in gridworld, a similar configuration is applied to the single objective traveling salesman problem. Yet while it was hoped that AOE learning would allow for a fast and beneficial sharing of knowledge between colonies, this goal was not achieved, despite the efforts detailed within. The reason for this lack of performance is due to the nature of the TSP, whose single objective landscape discourages colonies from learning unique portions of the search space. Without this specialization, AOE was found to make parallel ACO faster than the use of a single large colony but less efficient than multiple independent colonies

    A survey on metaheuristics for stochastic combinatorial optimization

    Get PDF
    Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this fiel
    • …
    corecore