235 research outputs found

    A Data Collecting Strategy for Farmland WSNs using a Mobile Sink

    Get PDF
    To the characteristics of large number of sensor nodes, wide area and unbalanced energy consumption in farmland Wireless Sensor Networks, an efficient data collection strategy (GCMS) based on grid clustering and a mobile sink is proposed. Firstly, cluster is divided based on virtual grid, and the cluster head is selected by considering node position and residual energy. Then, an optimal mobile path and residence time allocation mechanism for mobile sink are proposed. Finally, GCMS is simulated and compared with LEACH and GRDG. Simulation results show that GCMS can significantly prolong the network lifetime and increase the amount of data collection, especially suitable for large-scale farmland Wireless Sensor Networks

    Quality-Aware Scheduling Algorithms in Renewable Sensor

    No full text
    Wireless sensor network has emerged as a key technology for various applications such as environmental sensing, structural health monitoring, and area surveillance. Energy is by far one of the most critical design hurdles that hinders the deployment of wireless sensor networks. The lifetime of traditional battery-powered sensor networks is limited by the capacities of batteries. Even many energy conservation schemes were proposed to address this constraint, the network lifetime is still inherently restrained, as the consumed energy cannot be replenished easily. Fully addressing this issue requires energy to be replenished quite often in sensor networks (renewable sensor networks). One viable solution to energy shortages is enabling each sensor to harvest renewable energy from its surroundings such as solar energy, wind energy, and so on. In comparison with their conventional counterparts, the network lifetime in renewable sensor networks is no longer a main issue, since sensors can be recharged repeatedly. This results in a research focus shift from the network lifetime maximization in traditional sensor networks to the network performance optimization (e.g., monitoring quality). This thesis focuses on these issues and tackles important problems in renewable sensor networks as follows. We first study the target coverage optimization in renewable sensor networks via sensor duty cycle scheduling, where a renewable sensor network consisting of a set of heterogeneous sensors and a stationary base station need to be scheduled to monitor a set of targets in a monitoring area (e.g., some critical facilities) for a specified period, by transmitting their sensing data to the base station through multihop relays in a real-time manner. We formulate a coverage maximization problem in a renewable sensor network which is to schedule sensor activities such that the monitoring quality is maximized, subject to that the communication network induced by the activated sensors and the base station at each time moment is connected. We approach the problem for a given monitoring period by adopting a general strategy. That is, we divide the entire monitoring period into equal numbers of time slots and perform sensor activation or inactivation scheduling in the beginning of each time slot. As the problem is NP-hard, we devise efficient offline centralized and distributed algorithms for it, provided that the amount of harvested energy of each sensor for a given monitoring period can be predicted accurately. Otherwise, we propose an online adaptive framework to handle energy prediction fluctuation for this monitoring period. We conduct extensive experiments, and the experimental results show that the proposed solutions are very promising. We then investigate the data collection optimization in renewable sensor networks by exploiting sink mobility, where a mobile sink travels around the sensing field to collect data from sensors through one-hop transmission. With one-hop transmission, each sensor could send data directly to the mobile sink without any relay, and thus no energy are consumed on forwarding packets for others which is more energy efficient in comparison with multi-hop relays. Moreover, one-hop transmission particularly is very useful for a disconnected network, which may be due to the error-prone nature of wireless communication or the physical limit (e.g., some sensors are physically isolated), while multi-hop transmission is not applicable. In particular, we investigate two different kinds of mobile sinks, and formulate optimization problems under different scenarios, for which both centralized and distributed solutions are proposed accordingly. We study the performance of the proposed solutions and validate their effectiveness in improving the data quality. Since the energy harvested often varies over time, we also consider the scenario of renewable sensor networks by utilizing wireless energy transfer technology, where a mobile charging vehicle periodically travels inside the sensing field and charges sensors without any plugs or wires. Specifically, we propose a novel charging paradigm and formulate an optimization problem with an objective of maximizing the number of sensors charged per tour. We devise an offline approximation algorithm which runs in quasi-polynomial time and develop efficient online sensor charging algorithms, by considering the dynamic behaviors of sensors’ various sensing and transmission activities. To study the efficiency of the proposed algorithms, we conduct extensive experiments and the experimental results demonstrate that the proposed algorithms are very efficient. We finally conclude our work and discuss potential research topics which derive from the studies of this thesis

    Compression vs Transmission Tradeoffs for Energy Harvesting Sensor Networks

    Get PDF
    The operation of Energy Harvesting Wireless Sensor Networks (EHWSNs) is a very lively area of research. This is due to the increasing inclination toward green systems, in order to reduce the energy consumption of human activities at large and to the desire of designing networks that can last unattended indefinitely (see, e.g., the nodes employed in Wireless Sensor Networks, WSNs). Notably, despite recent technological advances, batteries are expected to last for less than ten years for many applications and their replacement is often prohibitively expensive. This problem is particularly severe for urban sensing applications, think of, e.g., sensors placed below the street level to sense the presence of cars in parking lots, where the installation of new power cables is impractical. Other examples include body sensor networks or WSNs deployed in remote geographic areas. In contrast, EHWNs powered by energy scavenging devices (renewable power) provide potentially maintenance-free perpetual network operation, which is particularly appealing, especially for highly pervasive Internet of Things. Lossy temporal compression has been widely recognized as key for Energy Constrained Wireless Sensor Networks (WSN), where the imperfect reconstruction of the signal is often acceptable at the data collector, subject to some maximum error tolerance. The first part of this thesis deals with the evaluation of a number of lossy compression methods from the literature, and the analysis of their performance in terms of compression efficiency, computational complexity and energy consumption. Specifically, as a first step, a performance evaluation of existing and new compression schemes, considering linear, autoregressive, FFT-/DCT- and Wavelet-based models is carried out, by looking at their performance as a function of relevant signal statistics. After that, closed form expressions for their overall energy consumption and signal representation accuracy are obtained through numerical fittings. Lastly, the benefits that lossy compression methods bring about in interference-limited multi-hop networks are evaluated. In this scenario the channel access is a source of inefficiency due to collisions and transmission scheduling. The results reveal that the DCT-based schemes are the best option in terms of compression efficiency but are inefficient in terms of energy consumption. Instead, linear methods lead to substantial savings in terms of energy expenditure by, at the same time, leading to satisfactory compression ratios, reduced network delay and increased reliability performance. The subsequent part of the thesis copes with the problem of energy management for EHWSNs where sensor batteries are recharged via the energy harvested through a solar panel and sensors can choose to compress data before transmission. A scenario where a single node communicates with a single receiver is considered. The task of the node is to periodically sense some physical signal and report the measurements to the receiver (sink). We assume that this task is delay tolerant, i.e., the sensor can store a certain number of measurements in the memory buffer and send one or more packets of data after some time. Since most physical signals exhibit strong temporal correlation, the data in the buffer can often be compressed by means of a lossy compression method in order to reduce the amount of data to be sent. Lossy compression schemes allow us to select the compression ratio and trade some accuracy in the data reconstruction at the receiver for more energy savings at the transmitter. Specifically, our objective is to obtain the policy, i.e., the set of decision rules that describe the node behavior, that jointly maximizes throughput and reconstruction fidelity at the sink while meeting some predefined energy constraints, e.g., the battery charge level should never go below a guard threshold. To obtain this policy, the system is modeled as a Constrained Markov Decision Process (CMDP), and solved through Lagrangian Relaxation and Value Iteration Algorithm. The optimal policies are then compared with heuristic policies in different energy budget scenarios. Moreover the impact of the delay on the knowledge of the Channel State Information is investigated. Two more parts of this thesis deal with the development of models for the generation of space-time correlated signals and for the description of the energy harvested by outdoor photovoltaic panels. The former are very useful to prove the effectiveness of the proposed data gathering solutions as they can be used in the design of accurate simulation tools for WSNs. In addition, they can also be considered as reference models to prove theoretical results for data gathering or compression algorithms. The latter are especially useful in the investigation and in the optimization of EHWSNs. These models will be presented at the beginning and then intensively used for the analysis and the performance evaluation of the schemes that are treated in the remainder of the thesis

    The energy problem in resource constrained wireless networks

    Get PDF
    Today Wireless Sensor Networks are part of a wider scenario involving several wireless and wired communication technology: the Internet Of Things (IoT). The IoT envisions billions of tiny embedded devices, called Smart Objects, connected in a Internet-like structure. Even if the integration of WSNs into the IoT scenario is nowadays a reality, the main bottleneck of this technology is the energy consumption of sensor nodes, which quickly deplete the limited amount of energy of available in batteries. This drawback, referred to as the energy problem, was addressed in a number of research papers proposing various energy optimization approaches to extend sensor nodes lifetime. However, energy problem is still an open issue that prevents the full exploitation of WSN technology. This thesis investigates the energy problem in WSNs and introduces original solutions trying to mitigate drawbacks related to this phenomenon. Starting from solutions proposed by the research community in WSNs, we deeply investigate critical and challenging factors concerning the energy problem and we came out with cutting-edge low-power hardware platforms, original software energy-aware protocols and novel energy-neutral hardware/software solutions overcoming the state-of-art. Concerning low-power hardware, we introduce the MagoNode, a new WSN mote equipped with a radio frequency (RF) front-end which enhances radio performance. We show that in real applicative contexts, the advantages introduced by the RF front-end keep packet re-trasmissions and forwards low. Furthermore, we present the ultra low-power Wake-Up Radio (WUR) system we designed and the experimental activity to validate its performance. In particular, our Wake-up Radio Receiver (WRx) features a sensitivity of -50 dBm, has a current consumption of 579nA in idle-listening and features a maximum radio range of about 19 meters. What clearly resulted from the experimental activity is that performance of the WRx is strongly affected by noise. To mitigate the impact of noise on WUR communication we implemented a Forward Error Correction (FEC) mechanism based on Hamming code. We performed several test to determine the effectiveness of the proposed solution. The outcome show that our WUR system can be employed in environment where the Bit Error Rate (BER) induced by noise is up to 10^2, vice versa, when the BER induced by noise is in the order of 10´3 or below, it is not worth to use any Forward Error Correction (FEC) mechanism since it does not introduce any advantages compared to uncoded data. In the context of energy-aware solutions, we present two protocols: REACTIVE and ALBA-WUR. REACTIVE is a low-power over-the-air programming (OAP) protocol we implemented to improve the energy efficiency and lower the image dissemination time of Deluge T2, a well-known OAP protocol implemented in TinyOS. To prove the effectiveness of REACTIVE we compared it to Deluge exploiting a testbed made of MagoNode motes. Results of our experiments show that the image dissemination time is 7 times smaller than Deluge, while the energy consumption drops 2.6 times. ALBA-WUR redesigns ALBA-R protocol, extending it to exploit advantages of WUR technology. We compared ALBA-R and ALBA-WUR in terms of current consumption and latency via simulations. Results show that ALBA-WUR estimated network lifetime is decades longer than that achievable by ALBA-R. Furthermore, end-to-end packet latency features by ALBA-WUR is comparable to that of ALBA-R. While the main goal of energy optimization approaches is motes lifetime maximization, in recent years a new research branch in WSN emerged: Energy Neutrality. In contrast to lifetime maximization approach, energy neutrality foresees the perennial operation of the network. This can be achieve only making motes use the harvested energy at an appropriate rate that guarantees an everlasting lifetime. In this thesis we stress that maximizing energy efficiency of a hardware platform dedicated to WSNs is the key to reach energy neutral operation (ENO), still providing reasonable data rates and delays. To support this conjecture, we designed a new hardware platform equipped with our wake-up radio (WUR) system able to support ENO, the MagoNode++. The MagoNode++ features a energy harvester to gather energy from solar and thermoelectric sources, a ultra low power battery and power management module and our WUR system to improve the energy efficiency of wireless communications. To prove the goodness in terms of current consumption of the MagoNode++ we ran a series of experiments aimed to assess its performance. Results show that the MagoNode++ consumes only 2.8 µA in Low Power Mode with its WRx module in listening mode. While carrying on our research work on solutions trying to mitigate the energy problem, we also faced a challenging application context where the employment of WSNs is considered efficient and effective: structural health monitoring (SHM). SHM deals with the early detection of damages to civil and industrial structures and is emerging as a fundamental tool to improve the safety of these critical infrastructures. In this thesis we present two real world WSNs deployment dedicated to SHM. The first concerned the monitoring of the Rome B1 Underground construction site. The goal was to monitor the structural health of a tunnel connecting two stops. The second deployment concerned the monitoring of the structural health of buildings in earthquake-stricken areas. From the experience gained during these real world deployments, we designed the Modular Monitoring System (MMS). The MMS is a new low-power platform dedicated to SHM based on the MagoNode. We validated the effectiveness of the MMS low-power design performing energy measurements during data acquisition from actual transducers

    From serendipity to sustainable Green IoT: technical, industrial and political perspective

    Get PDF
    Recently, Internet of Things (IoT) has become one of the largest electronics market for hardware production due to its fast evolving application space. However, one of the key challenges for IoT hardware is the energy efficiency as most of IoT devices/objects are expected to run on batteries for months/years without a battery replacement or on harvested energy sources. Widespread use of IoT has also led to a largescale rise in the carbon footprint. In this regard, academia, industry and policy-makers are constantly working towards new energy-efficient hardware and software solutions paving the way for an emerging area referred to as green-IoT. With the direct integration and the evolution of smart communication between physical world and computer-based systems, IoT devices are also expected to reduce the total amount of energy consumption for the Information and Communication Technologies (ICT) sector. However, in order to increase its chance of success and to help at reducing the overall energy consumption and carbon emissions a comprehensive investigation into how to achieve green-IoT is required. In this context, this paper surveys the green perspective of the IoT paradigm and aims to contribute at establishing a global approach for green-IoT environments. A comprehensive approach is presented that focuses not only on the specific solutions but also on the interaction among them, and highlights the precautions/decisions the policy makers need to take. On one side, the ongoing European projects and standardization efforts as well as industry and academia based solutions are presented and on the other side, the challenges, open issues, lessons learned and the role of policymakers towards green-IoT are discussed. The survey shows that due to many existing open issues (e.g., technical considerations, lack of standardization, security and privacy, governance and legislation, etc.) that still need to be addressed, a realistic implementation of a sustainable green-IoT environment that could be universally accepted and deployed, is still missing
    • …
    corecore