14,112 research outputs found

    Statistical distributions in the folding of elastic structures

    Get PDF
    The behaviour of elastic structures undergoing large deformations is the result of the competition between confining conditions, self-avoidance and elasticity. This combination of multiple phenomena creates a geometrical frustration that leads to complex fold patterns. By studying the case of a rod confined isotropically into a disk, we show that the emergence of the complexity is associated with a well defined underlying statistical measure that determines the energy distribution of sub-elements,``branches'', of the rod. This result suggests that branches act as the ``microscopic'' degrees of freedom laying the foundations for a statistical mechanical theory of this athermal and amorphous system

    Stokes imaging polarimetry using image restoration at the Swedish 1-m Solar Telescope

    Full text link
    Aims: We aim to achieve high spatial resolution as well as high polarimetric sensitivity, using an earth-based 1m-class solar telescope, for the study of magnetic fine structure on the Sun. Methods: We use a setup with 3 high-speed, low-noise cameras to construct datasets with interleaved polarimetric states, particularly suitable for Multi-Object Multi-Frame Blind Deconvolution image restorations. We discuss the polarimetric calibration routine as well as various potential sources of error in the results. Results: We obtained near diffraction limited images, with a noise level of approximately 10^(-3) I(cont). We confirm that dark-cores have a weaker magnetic field and at a lower inclination angle with respect to the solar surface than the edges of the penumbral filament. We show that the magnetic field strength in faculae-striations is significantly lower than in other nearby parts of the faculae.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 11 figure

    Patterns and Collective Behavior in Granular Media: Theoretical Concepts

    Full text link
    Granular materials are ubiquitous in our daily lives. While they have been a subject of intensive engineering research for centuries, in the last decade granular matter attracted significant attention of physicists. Yet despite a major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradicting concepts and approaches. Authors give an overview of various theoretical models emerged in the physics of granular matter, with the focus on the onset of collective behavior and pattern formation. Their aim is two-fold: to identify general principles common for granular systems and other complex non-equilibrium systems, and to elucidate important distinctions between collective behavior in granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb pdf) avaliable at http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community responce is appreciated. Comments/suggestions send to [email protected]
    • …
    corecore